Preparation of Heterobimetallic Oxide–Hydroxide–Hydrogensulfides [LAl(OH)(μ-O)MCp2(SH)] (M=Ti, Zr)†
Vojtech Jancik Dr.
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 37077 Göttingen, Germany, Fax: (+49) 551-39-3373
Search for more papers by this authorHerbert W. Roesky Prof. Dr.
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 37077 Göttingen, Germany, Fax: (+49) 551-39-3373
Search for more papers by this authorVojtech Jancik Dr.
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 37077 Göttingen, Germany, Fax: (+49) 551-39-3373
Search for more papers by this authorHerbert W. Roesky Prof. Dr.
Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 37077 Göttingen, Germany, Fax: (+49) 551-39-3373
Search for more papers by this authorL=HC[C(Me)N(Ar)]2, Ar=2,6-iPr2C6H3. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.
Graphical Abstract
Heterobimetallic sulfides of composition [LAl(μ-S)2MCp2] (M=Ti, Zr) react smoothly with two equivalents of water by ring opening and chalcogen exchange to form the heterobimetallic oxide–hydroxide–hydrogensulfides [LAl(OH)(μ-O)MCp2(SH)] (Ti derivative shown). The presence of the hydrolysis intermediate [LAl(SH)(μ-O)MCp2(SH)] in the reaction mixture confirms the proposed pathway.
References
- 1V. Jancik, H. W. Roesky, D. Neculai, A. M. Neculai, R. Herbst-Irmer, Angew. Chem. 2004, 116, 6318–6322;
10.1002/ange.200461254 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 6192–6196.
- 2G. Bai, H. W. Roesky, J. Li, M. Noltemeyer, H.-G. Schmidt, Angew. Chem. 2003, 115, 5660–5664; Angew. Chem. Int. Ed. 2003, 42, 5502–5506.
- 3aC. Duboc-Toia, S. Ménage, J.-M. Vincent, M. T. Averbuch-Pouchot, M. Fontecave, Inorg. Chem. 1997, 36, 6148–6149;
- 3bJ. Beckmann, K. Jurkschat, M. Schurmann, Eur. J. Inorg. Chem. 2000, 939–941;
10.1002/(SICI)1099-0682(200005)2000:5<939::AID-EJIC939>3.0.CO;2-3 CAS Web of Science® Google Scholar
- 3cY. Zhang, F. Cervantes-Lee, K. H. Pannell, Organometallics 2003, 22, 510–515;
- 3dS. Abram, C. Maichle-Mossmer, U. Abram, Polyhedron 1998, 17, 131–143;
- 3eF. A. Cotton, E. V. Dikarev, M. A. Petrukhina, Inorg. Chim. Acta 2002, 334, 67–70;
- 3fH. Masuda, T. Taga, K. Osaki, H. Sugimoto, M. Mori, H. Ogoshi, J. Am. Chem. Soc. 1981, 103, 2199–2203;
- 3gM. A. Edelman, P. B. Hitchcock, M. F. Lappert, J. Chem. Soc. Chem. Commun. 1990, 1116–1118;
- 3hP. Knopp, K. Wieghardt, B. Nuber, J. Weiss, W. S. Sheldrick, Inorg. Chem. 1990, 29, 363–371;
- 3iG. Jany, R. Fawzi, M. Steimann, B. Rieger, Organometallics 1997, 16, 544–550.
- 4One can argue that the unobserved intermediate could be [LAl(SH)(μ-S)MCp2(OH)], rather than [LAl(OH)(μ-S)MCp2(SH)]. However, the higher stability of the TiSH bond towards hydrolysis, the shielding of the Ti center by two Cp rings, and the easy replacement of the AlSH group by an AlOH moiety in the next reaction step support our conclusion.
- 5V. Jancik, H. W. Roesky, unpublished results.
- 6
- 6aG. A. Zank, C. A. Jones, T. B. Rauchfuss, A. L. Rheingold, Inorg. Chem. 1986, 25, 1886–1891;
- 6bD. Coucouvanis, A. Hadjikyriacou, R. Lester, M. G. Kanatzidis, Inorg. Chem. 1994, 33, 3645–3655;
- 6cF. Bottomley, D. F. Drummond, G. O. Egharevba, P. S. White, Organometallics 1986, 5, 1620–1625;
- 6dM. A. F. Hernandez-Gruel, J. J. Pérez-Torrente, M. A. Ciriano, J. A. López, F. J. Lahoz, L. A. Oro, Eur. J. Inorg. Chem. 1999, 2047–2050.
10.1002/(SICI)1099-0682(199911)1999:11<2047::AID-EJIC2047>3.0.CO;2-R CAS Web of Science® Google Scholar
- 7V. Jancik, L. W. Pineda, J. Pinkas, H. W. Roesky, D. Neculai, A. M. Neculai, R. Herbst-Irmer, Angew. Chem. 2004, 116, 2194–2107;
10.1002/ange.200353541 Google ScholarAngew. Chem. Int. Ed. 2004, 43, 2142–2145.
- 8
- 8aCrystal data for 3: C39H53AlN2O2STi (688.77), monoclinic, space group P21/n, a=10.903(2), b=20.543(4), c=16.222(3) Å, β=99.02(3)°, V=3589(1) Å3, Z=4, ρcalcd=1.275 Mg m−3, F(000)=1472, λ=1.54178 Å, T=100(2) K, μ(CuKα)=3.075 mm−1. Of the 22 938 measured reflections, 5087 were independent (Rint=0.0495). The final refinements converged at R1=0.0397 for I>2σ(I), wR2=0.1125 for all data. The final difference Fourier synthesis gave a min/max residual electron density of −0.260/+0.477 e Å−3;
- 8bcrystal data for 4: C39H53AlN2O1.87S1.13Zr (734.14), monoclinic, space group P21/n, a=11.064(2), b=20.627(3), c=16.242(3) Å, β=97.76(3)°, V=3673(1) Å3, Z=4, ρcalcd=1.328 Mg m−3, F(000)=1548, λ=1.54178 Å, T=100(2) K, μ(CuKα)=3.548 mm−1. Of the 15 708 measured reflections, 5150 were independent (Rint=0.0351). The final refinements converged at R1=0.0291 for I>2σ(I), wR2=0.0764 for all data. The final difference Fourier synthesis gave a min/max residual electron density of −0.447/+0.399 e Å−3;
- 8cdata for the structures were collected on a Bruker three-circle diffractometer equipped with a SMART 6000 CCD detector. Intensity measurements were performed on a rapidly cooled crystal (0.40×0.30×0.30 mm3) in the range 7.00≤2θ≤117.92° (3) and in the range 6.96≤2θ≤117.94° (4; 0.10×0.05×0.05 mm3). The structures were solved by direct methods (SHELXS-97)[13] and refined against all data by full-matrix least-squares on F2.[14] All the CH hydrogen atoms except H(3A) were included in geometrically idealized positions and refined with the riding model. Localization of the H(3A) hydrogen from the electron-density map in both structures proved to be more accurate than its fixing in the idealized position and led to a lowering of the R1 and wR2 values. The hydrogen atoms of the OH and SH moieties in 3 and 4 were localized from the difference electron-density map and refined isotropically with Uij tied to the parent atom. The AlSH proton belonging to the [LAl(SH)(μ-O)ZrCp2(SH)] in the crystal of 4 could not be localized due to its low content (about 15 %). CCDC-270756 (3) and CCDC-270757 (4) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 9G. Bai, Y. Peng, H. W. Roesky, J. Li, H.-G. Schmidt, M. Noltemeyer, Angew. Chem. 2003, 115, 1164–1167; Angew. Chem. Int. Ed. 2003, 42, 1132–1135.
- 10
- 10aM. Veith, M. Jarczyk, V. Huch, Angew. Chem. 1997, 109, 140–142;
10.1002/ange.19971090145 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 117–119;
- 10bJ. Storre, A. Klemp, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, R. Fleischer, D. Stalke, J. Am. Chem. Soc. 1996, 118, 1380–1386;
- 10cC. Schnitter, H. W. Roesky, T. Albers, H.-G. Schmidt, C. Röpken, E. Parisini, G. M. Sheldrick, Chem. Eur. J. 1997, 3, 1783–1792;
- 10dY. Koide, A. R. Barron, Organometallics 1995, 14, 4026–4029.
- 11
- 11aF. Bottomley, R. W. Day, Can. J. Chem. 1992, 70, 1250–1259;
- 11bG. A. Zank, T. B. Rauchfuss, S. R. Wilson, A. L. Rheingold, J. Am. Chem. Soc. 1984, 106, 7621–7623;
- 11cZ. K. Sweeney, J. L. Polse, R. A. Anderson, R. G. Bergman, J. Am. Chem. Soc. 1998, 120, 7825–7834;
- 11dR. Steudel, A. Prenzel, J. Pickardt, Angew. Chem. 1991, 103, 586–588; Angew. Chem. Int. Ed. Engl. 1991, 30, 550–552.
- 12
- 12aW. E. Piers, L. Koch, D. S. Ridge, L. R. MacGillivray, M. Zaworotko, Organometallics 1992, 11, 3148–3152;
- 12bJ. L. Petersen, J. Organomet. Chem. 1979, 166, 179–192;
- 12cV. W.-W. Yam, G.-Z. Qi, K.-K. Cheung, J. Organomet. Chem. 1997, 548, 289–294;
- 12dH.-M. Gau, C.-A. Chen, S.-J. Chang, W.-E. Shih, T.-K. Yang, T.-T. Jong, M.-Y. Chien, Organometallics 1993, 12, 1314–1318.
- 13SHELXS-97, Program for Structure Solution: G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
- 14G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, Universität Göttingen, Göttingen, 1997.