Origin of the High Activity of Second-Generation Grubbs Catalysts†
Bernd F. Straub Dr.
Department of Chemie and Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13 (Haus F), 81377 München, Germany, Fax: (+49) 89-2180-77717
Search for more papers by this authorBernd F. Straub Dr.
Department of Chemie and Biochemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13 (Haus F), 81377 München, Germany, Fax: (+49) 89-2180-77717
Search for more papers by this authorThis research was supported by a Liebig-Fellowship of the Fonds der Chemischen Industrie. Generous support by the LMU Munich, Prof. Dr. Thomas Carell, and Prof. Dr. Herbert Mayr is gratefully acknowledged. Some of these results were presented in a lecture by B.F.S. at the Chemiedozententagung in Munich on March 9, 2005. The model structures 3 b,c to 11 b,c have been included in ref. [9] for a comparison of the overall activation energies of alkene metathesis and enyne metathesis.
Graphical Abstract
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2005/z501114_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. M. Trnka, R. H. Grubbs, Acc. Chem. Res. 2001, 34, 18;
- 1bM. Schuster, S. Blechert, Chem. unserer Zeit 2001, 35, 24;
- 1cR. Roy, S. K. Das, Chem. Commun. 2000, 519;
- 1dA. Fürstner, Angew. Chem. 2000, 112, 3140;
10.1002/1521-3757(20000901)112:17<3140::AID-ANGE3140>3.0.CO;2-G Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3012;10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 1eR. H. Grubbs, S. Chang, Tetrahedron 1998, 54, 4413;
- 1fM. Schuster, S. Blechert, Angew. Chem. 1997, 109, 2124; Angew. Chem. Int. Ed. Engl. 1997, 36, 2036;
- 1grecently published: K. C. Nicolaou, P. G. Burger, D. Sarlah, Angew. Chem. 2005, 117, 4564;
10.1002/ange.200500369 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 4490.
- 2P. Schwab, R. H. Grubbs, J. W. Ziller, J. Am. Chem. Soc. 1996, 118, 100.
- 3T. Weskamp, W. C. Schattenmann, M. Spiegler, W. A. Herrmann, Angew. Chem. 1998, 110, 2631;
10.1002/(SICI)1521-3757(19980918)110:18<2631::AID-ANGE2631>3.0.CO;2-J Google ScholarAngew. Chem. Int. Ed. 1998, 37, 2490.10.1002/(SICI)1521-3773(19981002)37:18<2490::AID-ANIE2490>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 4C. Adlhart, P. Chen, J. Am. Chem. Soc. 2004, 126, 3496.
- 5E. L. Dias, S. T. Nguyen, R. H. Grubbs, J. Am. Chem. Soc. 1997, 119, 3887.
- 6J.-L. Hérisson, Y. Chauvin, Makromol. Chem. 1971, 141, 161.
- 7
- 7aM. S. Sanford, M. Ulman, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 749;
- 7bS. Sanford, J. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543.
- 8For near-degenerate metathesis reactions, the different local symmetry of the NHC and phosphine spectator ligands has been proposed to be relevant. C. Adlhart, P. Chen, Angew. Chem. 2002, 114, 4668;
10.1002/1521-3757(20021202)114:23<4668::AID-ANGE4668>3.0.CO;2-C Google ScholarAngew. Chem. Int. Ed. 2002, 41, 4484.10.1002/1521-3773(20021202)41:23<4484::AID-ANIE4484>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 9J. J. Lippstreu, B. F. Straub, J. Am. Chem. Soc. 2005, 127, 7444.
- 10On the 1H NMR spectroscopy time scale at room temperature, carbene rotation is rapid in a ruthenium complex. See T. Weskamp, F. J. Kohl, W. Hieringer, D. Gleich, W. A. Herrmann, Angew. Chem. 1999, 111, 2416;
10.1002/(SICI)1521-3757(19990816)111:16<2573::AID-ANGE2573>3.0.CO;2-A Google ScholarAngew. Chem. Int. Ed. 1999, 38, 2573. This feature indicates that the rotation barrier is below about 50 kJ mol−1. The assumption of a “free” carbene rotation might have been a factor for considering the carbene rotation as irrelevant for the overall catalytic barrier.
- 11
- 11aS. M. Hansen, F. Rominger, M. Metz, P. Hofmann, Chem. Eur. J. 1999, 5, 557;
- 11bS. M. Hansen, diploma thesis, Ruprecht-Karls-Universität Heidelberg, 1996; See also
- 11cJ. N. Coalter III, J. C. Bollinger, J. C. Huffman, U. Werner-Zwanziger, K. G. Caulton, E. R. Davidson, H. Gerard, E. Clot, O. Eisenstein, New J. Chem. 2000, 24, 9.
- 12The B3LYP/LACV3P**+//B3LYP/LACVP* level of theory as implemented in the Jaguar 4.1 program package was used. Gibbs free energies refer to ideal gas-phase conditions at 298.15 K and 1 atm.
- 12aJaguar 4.1, release 59, Schrödinger, Inc., Portland, OR, USA, 2001;
- 12bA. D. Becke, J. Chem. Phys. 1993, 98, 5648;
- 12cS. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200;
- 12dC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785;
- 12eW. J. Hehre, R. J. Ditchfield, A. Pople, J. Chem. Phys. 1972, 56, 2257;
- 12fP. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213;
- 12gM. J. Frisch, J. A. Pople, J. S. Binkley, J. Chem. Phys. 1984, 80, 3265;
- 12hR. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650;
- 12iP. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299;
- 12jG. Schaftenaar, J. H. Noordik, J. Comput.-Aided Mol. Des. 2000, 14, 123.
- 13See, for example
- 13aS. F. Vyboishikov, M. Bühl, W. Thiel, Chem. Eur. J. 2002, 8, 3962;
- 13bL. Cavallo, J. Am. Chem. Soc. 2002, 124, 8965;
- 13cC. Costabile, L. Cavallo, J. Am. Chem. Soc. 2004, 126, 9592.
- 14The transition state for rotation of the methylene unit from model 3 b to model 4 b has a relative Gibbs free energy of Grel=11.2 kJ mol−1. The transition state connecting structures 3 c and 4 c has a relative Gibbs free energy of Grel=11.8 kJ mol−1; see ref. [9].
- 15A derivative of model 6 b has been characterized crystallographically; see J. A. Tallarico, P. J. Bonitatebus, Jr.,M. L. Snapper, J. Am. Chem. Soc. 1997, 119, 7157.
- 16Recently, a derivative of model 11 c has been characterized by NMR spectroscopy; see P. E. Romero, W. E. Piers, J. Am. Chem. Soc. 2005, 127, 5032.
- 17Owing to the low binding strength of the alkene ligand to ruthenium, alkene reorientation may proceed either by alkene dissociation and re-association or by intramolecular alkene ligand rotation. Since the active alkene conformation is more stable than the inactive conformation anyway, alkene rotation should be irrelevant in the catalytic cycle.
- 18Zero-point energy corrections to E0 values would result in a decrease of the energy differences of about 5 kJ mol−1.