A Simple General Ligand System for Assembling Octahedral Metal–Rotaxane Complexes†
Louise Hogg
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorDavid A. Leigh Prof.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorPaul J. Lusby Dr.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorAlessandra Morelli
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorSimon Parsons Dr.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorJenny K. Y. Wong Dr.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorLouise Hogg
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorDavid A. Leigh Prof.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorPaul J. Lusby Dr.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorAlessandra Morelli
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorSimon Parsons Dr.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorJenny K. Y. Wong Dr.
School of Chemistry, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, United Kingdom, Fax: (+44) 131-667-9085
Search for more papers by this authorThis work was supported by the European Union Future and Emerging Technology Program MechMol and the EPSRC.
Graphical Abstract
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2004/z53186_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ.-P. Sauvage, C. Dietrich-Buchecker, G. Rapenne in Molecular Catenanes, Rotaxanes and Knots (Eds.: ), Wiley-VCH, 1999;
10.1002/9783527613724 Google Scholar
- 1bJ.-P. Collin, C. Dietrich-Buchecker, P. Gaviña, M. C. Jimenez-Molero, J.-P. Sauvage, Acc. Chem. Res. 2001, 34, 477–487; For complexes in which metal coordination forms part of the macrocycle in a rotaxane see:
- 1cK.-S. Jeong, J. S. Choi, S.-Y. Chang, H.-Y. Chang, Angew. Chem. 2000, 112, 1758–1761;
Angew. Chem. Int. Ed. 2000, 39, 1692–1695;
10.1002/(SICI)1521-3773(20000502)39:9<1692::AID-ANIE1692>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 1dS.-Y. Chang, J. S. Choi, K.-S. Jeong, Chem. Eur. J. 2001, 7, 2687–2697;
10.1002/1521-3765(20010618)7:12<2687::AID-CHEM26870>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- 1eS.-Y. Chang, K.-S. Jeong, J. Org. Chem. 2003, 68, 4014–4019;
- 1fS.-Y. Chang, H.-Y. Jang, K.-S. Jeong, Chem. Eur. J. 2003, 9, 1535–1541; For complexes in which metal coordination forms part of the thread in a rotaxane see:
- 1gK.-M. Park, D. Whang, E. Lee, J. Heo, K. Kim, Chem. Eur. J. 2002, 8, 498–508; For complexes in which metal coordination forms the stoppers in a rotaxane see:
10.1002/1521-3765(20020118)8:2<498::AID-CHEM498>3.0.CO;2-M CAS PubMed Web of Science® Google Scholar
- 1hR. B. Hannak, G. Färber, R. Konrat, B. Kräutler, J. Am. Chem. Soc. 1997, 119, 2313–2314;
- 1iJ.-C. Chambron, J.-P. Collin, J.-O. Dalbavie, C. O. Dietrich-Buchecker, V. Heitz, F. Odobel, N. Solladié, J.-P. Sauvage, Coord. Chem. Rev. 1998, 178–180, 1299–1312;
- 1jA. J. Baer, D. H. Macartney, Inorg. Chem. 2000, 39, 1410–1417;
- 1kS. J. Loeb, J. A. Wisner, Chem. Commun. 1998, 2757–2758;
- 1lG. J. E. Davidson, S. J. Loeb, N. A. Parekh, J. A. Wisner, J. Chem. Soc. Dalton Trans. 2001, 3135–3136; For polyrotaxanes based on metal coordination polymers see:
- 1mS. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558–1595;
10.1002/(SICI)1521-3757(19980605)110:11<1558::AID-ANGE1558>3.0.CO;2-7 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1460–1494;10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 1nA. J. Blake, N. R. Champness, P. Hubberstey, W.-S. Li, M. A. Withersby, M. Schröder, Coord. Chem. Rev. 1999, 183, 117–138;
- 1oK. Kim, Chem. Soc. Rev. 2002, 31, 96–107.
- 2
- 2aN. Armaroli, V. Balzani, J.-P. Collin, P. Gaviña, J.-P. Sauvage, B. Ventura, J. Am. Chem. Soc. 1999, 121, 4397–4408;
- 2bL. Raehm, J.-M. Kern, J.-P. Sauvage, Chem. Eur. J. 1999, 5, 3310–3317.
10.1002/(SICI)1521-3765(19991105)5:11<3310::AID-CHEM3310>3.0.CO;2-R CAS Web of Science® Google Scholar
- 3
- 3aJ.-C. Chambron, A. Harriman, V. Heitz, J.-P. Sauvage, J. Am. Chem. Soc. 1993, 115, 6109–6114;
- 3bM. Andersson, M. Linke, J.-C. Chambron, J. Davidsson, V. Heitz, L. Hammarström, J.-P. Sauvage, J. Am. Chem. Soc. 2002, 124, 4347–4362;
- 3cN. Watanabe, N. Kihara, Y. Furusho, T. Takata, Y. Araki, O. Ito, Angew. Chem. 2003, 115, 705–707; Angew. Chem. Int. Ed. 2003, 42, 681–683.
- 4P. Thordarson, E. J. A. Bijsterveld, A. E. Rowan, R. J. M. Nolte, Nature 2003, 424, 915–918.
- 5
- 5aC. Wu, P. R. Lecavalier, Y. X. Shen, H. W. Gibson, Chem. Mater. 1991, 3, 569–572;
- 5bJ.-C. Chambron, V. Heitz, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1992, 1131–1133.
- 6D. Pomeranc, D. Jouvenot, J.-C. Chambron, J.-P. Collin, V. Heitz, J.-P. Sauvage, Chem. Eur. J. 2003, 9, 4247–4254.
- 7D. A. Leigh, P. J. Lusby, S. J. Teat, A. J. Wilson, J. K. Y. Wong, Angew. Chem. 2001, 113, 1586–1591;
10.1002/1521-3757(20010417)113:8<1586::AID-ANGE1586>3.0.CO;2-3 Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1538–1543.10.1002/1521-3773(20010417)40:8<1538::AID-ANIE1538>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 8
- 8aS. J. Cantrill, S. J. Rowan, J. F. Stoddart, Org. Lett. 1999, 1, 1363–1366;
- 8bS. J. Rowan, J. F. Stoddart, Org. Lett. 1999, 1, 1913–1916;
- 8cP. T. Glink, A. I. Oliva, J. F. Stoddart, A. J. P. White, D. J. Williams, Angew. Chem. 2001, 113, 1922–1927;
10.1002/1521-3757(20010518)113:10<1922::AID-ANGE1922>3.0.CO;2-T Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1870–1875;10.1002/1521-3773(20010518)40:10<1870::AID-ANIE1870>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 8dM. J. Gunter, N. Bampos, K. D. Johnstone, J. K. M. Sanders, New J. Chem. 2001, 25, 166–173;
- 8eS. J. Rowan, S. J. Cantrill, G. R. L Cousins, J. K. M. Sanders, J. F. Stoddart, Angew. Chem. 2002, 114, 938–993;
10.1002/1521-3757(20020315)114:6<938::AID-ANGE938>3.0.CO;2-K Google ScholarAngew. Chem. Int. Ed. 2002, 41, 898–952;10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- 8fK. D. Johnstone, N. Bampos, J. K. M. Sanders, M. J. Gunter, Chem. Commun. 2003, 1396–1397;
- 8gR. G. E. Coumans, J. A. A. W. Elemans, P. Thordarson, R. J. M. Nolte, A. E. Rowan, Angew. Chem. 2003, 115, 674–678;
10.1002/ange.200390147 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 650–654;
- 8hA. F. M. Kilbinger, S. J. Cantrill, A. W. Waltman, M. W. Day, R. H. Grubbs, Angew. Chem. 2003, 115, 3403–3407; Angew. Chem. Int. Ed. 2003, 42, 3281–3285;
- 8iJ. S. Hannam, T. J. Kidd, D. A. Leigh, A. J. Wilson, Org. Lett. 2003, 5, 1907–1910;
- 8jY. Furusho, T. Oku, T. Hasegawa, A. Tsuboi, N. Kihara, T. Takata, Chem. Eur. J. 2003, 9, 2895–2903;
- 8kM. Horn, J. Ihringer, P. T. Glink, J. F. Stoddart, Chem. Eur. J. 2003, 9, 4046–4054.
- 9Reactions were monitored by electrospray mass spectrometry in all cases and by 1H NMR spectroscopy for systems not containing paramagnetic metals.
- 10The L1 and L2 resonances in [Zn(L1L2)](ClO4)2] were distinguished by a combination of COSY and ROESY experiments.
- 11[Cd(L1L2)](ClO4)2⋅2 MeCN⋅1.5 Et2O: C124H153CdCl2N8O11.5, Mr=2098.82, yellow block, crystal size 0.15×0.12×0.10 mm, monoclinic Cc, a=31.636(2), b=22.4269(14), c=22.2668(15) Å, β=133.7570(10)°, V=11410.8(13) Å3, Z=4, ρcalcd=1.222 Mg m−3; MoKα radiation (graphite monochromator, λ=0.71073 Å), μ=0.300 mm−1, T=150(2) K. 36017 data (22989 unique, Rint=0.03170, 1.27<θ<28.96°), were collected on a Bruker SMARTApex CCD diffractometer by using narrow frames (0.3° in ω), and were corrected semiempirically for absorption and incident beam decay. The structure was solved by direct methods and refined by full-matrix least-squares on F2 values of all data (G. M. Sheldrick, SHELXTL manual, Siemens Analytical X-ray Instruments, Madison WI, USA, 1994, version 5) to give wR={∑[w(F
−F
)2]/∑[w(F
)2]}1/2=0.1536, conventional R=0.0627 for F values of 22989 reflections with F
>2σF
), S=1.048 for 1371 parameters. Residual electron density extremes were 1.12 and −0.89 e Å−3. Hydrogens were added in calculated positions and constrained to a Riding model. CCDC-224059 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or [email protected]).
- 12Under identical experimental conditions the reduced thread, H4L2, does not afford [Zn(L1H4L2)](ClO4)2, thus precluding the possibility of a “slippage” mechanism.
- 13G. J. P. Britovesk, V. C. Gibson, S. Mastroianni, D. C. H. Oakes, C. Redshaw, G. A. Solan, A. J. P. White, D. J. Williams, Eur. J. Inorg. Chem. 2001, 431–437. The greater stability of octahedral metal–imine complexes, compared with metal–amine complexes, is also illustrated by the facile demetallation of amine—but not imine—octahedral metal catenates.[7]
10.1002/1099-0682(200102)2001:2<431::AID-EJIC431>3.0.CO;2-Q Google Scholar