Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture)†
Corresponding Author
Prof. Jean-Marie Lehn
Institut le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67 000 Strasbourg (France), and Collège de France, 11 Place Marcelin Berthelot, F-75 005 Paris (France)
Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67000 Strasbourg (France), and Collège de France, 11 Place Marcelin Berthelot, F-75005 Paris (France)Search for more papers by this authorCorresponding Author
Prof. Jean-Marie Lehn
Institut le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67 000 Strasbourg (France), and Collège de France, 11 Place Marcelin Berthelot, F-75 005 Paris (France)
Institut Le Bel, Université Louis Pasteur, 4, rue Blaise Pascal, F-67000 Strasbourg (France), and Collège de France, 11 Place Marcelin Berthelot, F-75005 Paris (France)Search for more papers by this authorCopyright © The Nobel Foundation 1988.–We thank the Nobel Foundation for permission to print this lecture. The figure on the preceding page shows a supermolecule formed from a heterotopic metallocoreceptor and a diammonium substrate; metal ions and an organic molecule are bound simultaneously. For further details see Section 4.4 (structure taken from Ref.[100]).
Abstract
Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by coreceptors, metalloreceptors, amphiphilic receptors, and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via cocatalysis. Lipophilic receptor molecules act as selective carriers for various substrates and make it possible to set up coupled transport processes linked to electron and proton gradients or to light. Whereas endoreceptors bind substrates in molecular cavities by convergent interactions, exoreceptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors, such as the metallonucleates, may be designed. In combination with polymolecular assemblies, receptors, carriers, and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer, and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons, or ions, thus defining fields of molecular photonics, electronics, and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light-conversion and charge-separation centers. Redox-active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes of double-helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic, and ionic devices that would perform highly selective recognition, reaction, and transfer operations for signal and information processing at the molecular level.
References
- 1 J.-M. Lehn, Struct. Bonding (Berlin) 16 (1973) 1.
- 2 J.-M. Lehn, Pure Appl. Chem. 50 (1978) 871.
- 3 J.-M. Lehn, Leçon Inaugurale, Collège de France, Paris 1980.
- 4 R. Pfeiffer: Organische Molekülverbindungen, Enke Verlag, Stuttgart 1927.
- 5 K. L. Wolf, H. Frahm, H. Harms, Z. Phys. Chem. Abt. B 36 (1937) 17; K. L. Wolf, H. Dunken, K. Merkel, Z. Phys. Chem. Abt. B 46 (1940) 287; K. L. Wolf, R. Wolff, Angew. Chem. 61 (1949) 191.
- 6 J.-M. Lehn, Acc. Chem. Res. 11 (1978) 49.
- 7 J.-M. Lehn in Z. I. Yoshida, N. Ise (Eds.): Biomimetic Chemistry, Kodansha, Tokyo/Elsevier, Amsterdam 1983, p. 163.
- 8 J.-M. Lehn, Science 227 (1985) 849.
- 9 P. G. Potvin, J.-M. Lehn in R. M. Izatt, J. J. Christensen (Eds.): Synthesis of Macrocycles: The Design of Selective Complexing Agents (Progress in Macrocyclic Chemistry, Vol. 3), Wiley, New York, 1987, p. 167.
- 10 E. Fischer, Ber. Dtsch. Chem. Ges. 27 (1894) 2985.
- 11 F. Cramer, W. Freist, Acc. Chem. Res. 20 (1987) 79.
- 12 J. F. Stoddart, Chem. Soc. Rev. 7 (1979) 85; Annu. Rep. Prog. Chem. Sect. B 1983, 353.
- 13 D. J. Cram, J. M. Cram, Acc. Chem. Res. 11 (1978) 8.
- 14 R. C. Hayward, Chem. Soc. Rev. 12 (1983) 285.
- 15 I. O. Sutherland, Chem. Soc. Rev. 15 (1986) 63.
- 16
G. van Binst (Ed.):
Design and Synthesis of Organic Molecules Based on Molecular Recognition,
Springer, Berlin
1986.
10.1007/978-3-642-70926-5 Google Scholar
- 17(a) J. Rebek, Jr., Acc. Chem. Res. 17 (1984) 258; (b) Science 235 (1987) 1478.
- 18(a) W. Bartmann, K. B. Sharpless (Eds.): Stereochemistry of Organic and Bioorganic Transformations, VCH Verlagsgesellschaft 1987; (b) P. B. Dervan, R. S. Youngquist, J. P. Sluka in [18a], p. 221; (c) W. C. Still in [18a], p. 235.
- 19 R. M. Izatt, J. J. Christensen (Eds.): Progress in Macrocyclic Chemistry, Vol. 1–3, Wiley, New York 1979, 1981 and 1987.
- 20 F. Vögtle (Ed.): Host Guest Chemistry (Top. Curr. Chem. 98 (1981), Science 101 (1982); F. Vögtle, E. Weber (Eds.), Science 121 (1984).
- 21 J. L. Atwood, J. E. D. Davies, D. D. MacNicol: Inclusion Compounds, Vol. 1–3, Academic Press, London 1984.
- 22
G. Wipff,
P. Kollman,
J.-M. Lehn,
J. Mol. Struct.
93
(1983) 153;
10.1016/0022-2860(83)90394-0 Google ScholarG. Ranghino, S. Romano, J.-M. Lehn, G. Wipff, J. Am. Chem. Soc. 107 (1985) 7873; G. Wipff, P. Kollman, Nouv. J. Chim. 9 (1985) 457; S. Lifson, M. Levitt (Eds.): Structure and Dynamics of Macromolecules ( Isr. J. Chem. 27 (1986) No. 2).
- 23 An idea about the respective role of collection and orientation may be gained from examining the energies calculated for a series of [Li(NH3)n]⊕ complexes and of the corresponding (NH3)n units in the identical geometry. In the presence of Li⊕ the formation energies of the complexes are obtained at the optimized Li⊕ … NH3 distances. When Li⊕ is removed and the NH3 molecules are kept at the same position, the energies calculated are for the formation of the coordination shell alone. These energies represent the repulsion between the NH3 groups; they are a measure of the intersite repulsive energy for bringing to gether two, three, or four amine binding sites into a polydentate ligand of same coordination geometry. Results, (NH3)n, geometry (repulsive energy [kcal/mol)]): (NH3)2, linear (-2.4), bent (-3.8); (NH3)3, trigonal (-9.1), pyramidal (-10.8); (NH3)4, tetrahedral (-20.8). Thus, the total collection energies are appreciably larger than the organization energies represented by the changes from one geometry to another, linear to bent (1.4 kcal/mol) or trigonal to pyramidal (1.7 kcal/mol). Ab initio computations performed with a set of Gaussian-type basis functions, contracted into a double set with polarization; J.-M. Lehn, R. Ventavoli, unpublished results; see also: R. Ventavoli, 3è Cycle Thesis, Université Louis Pasteur, Strasbourg 1972.
- 24(a)
Yu. A. Ovchinnikov,
V. T. Ivanov,
A. M. Skrob:
Membrane Active Complexones,
Elsevier, New York
1974;
(b)
B. C. Pressman,
Annu. Rev. Biochem.
45
(1976) 501;
(c)
H. Brockmann,
H. Geeren,
Justus Liebigs Ann. Chem.
603
(1957) 217;
10.1002/jlac.19576030123 Google Scholar(d) M. M. Shemyakin, N. A. Aldanova, E. I. Vinogradova, M. Yu Feigina, Tetrahedron Lett. 1963, 1921; (e) C. Moore, B. C. Pressman, Biochem. Biophys. Res. Commun. 15 (1964) 562; (f) B. C. Pressman, Proc. Natl. Acad. Sci. USA 53 (1965) 1077; (g) J. Beck, H. Gerlach, V. Prelog, W. Voser, Helv. Chem. Acta 74 (1962) 620; (h) Z. Stefanac, W. Simon, Chimia 20 (1966) 436; Microchem. J. 12 (1967) 125; (i) K. T. Kilbourn, J. D. Dunitz, L. A. R. Pioda, W. Simon, J. Mol. Biol. 30 (1967) 559; (j) P. Mueller, D. O. Rudin, Biochem. Biophys. Res. Commun. 26 (1967) 398; (k) T. E. Andreoli, M. Tieffenberg, D. C. Tosteson, J. Gen. Biol. 50 (1967) 2527; (l) M. M. Shemyakin, Yu. A. Ovchinnikov, V. T. Ivanov, V. K. Antonov, A. M. Skrob, I. I. Mikhaleva, A. V. Evstratov, G. G. Malenkov, J. Gen. Biol. 29 (1967) 834; (m) B. C. Pressman, E. J. Harris, W. S. Jagger, J. H. Johnson, Proc. Natl. Acad. Sci. USA 58 (1967) 1949.
- 25(a) C. J. Pedersen, J. Am. Chem. Soc. 89 (1967) 7017; (b) C. J. Pedersen, H. K. Frensdorff, Angew. Chem. 84 (1972) 16; Angew. Chem. Int. Ed. Engl. 11 (1972) 16.
- 26 D. J. Cram, Angew. Chem. 98 (1986) 1041; Angew. Chem. Int. Ed. Engl. 25 (1986) 1039.
- 27 D. Parker, Adv. Inorg. Chem. Radiochem. 27 (1983) 1; B. Dietrich, J. Chem. Ed. 62 (1985) 954, For the sepulchrate-type of encapsulated metal ions, see: A. M. Sargeson, Pure Appl. Chem. 56 (1984) 1603.
- 28(a) J.-M. Lehn, J.-P. Sauvage, J. Am. Chem. Soc. 97 (1975) 6700; (b) B. Dietrich, J.-M. Lehn, J.-P. Sauvage, J. Chem. Soc. Chem. Commun. 1973, 15.
- 29(a) B. Dietrich, J.-M. Lehn, J.-P. Sauvage, Tetrahedron Lett. 1969, 2885, 2889; (b) B. Dietrich, J.-M. Lehn, J.-P. Sauvage, J. Blanzat, Tetrahedron 29 (1973) 1629; B. Dietrich, J.-M. Lehn, J.-P. Sauvage, Tetrahedron 29 (1973) 1647; (c) B. Metz, D. Moras, R. Weiss, J. Chem. Soc. Chem. Commun. 1970, 217; F. Mathieu, B. Metz, D. Moras, R. Weiss, J. Am. Chem. Soc. 100 (1978) 4412, and references cited therein.
- 30 E. Graf, J.-M. Lehn, J. Am. Chem. Soc. 97, (1975) 5022; Helv. Chim. Acta 64 (1981) 1040.
- 31 B. Dietrich, J.-M. Lehn, unpublished results.
- 32 E. Graf, J.-M. Lehn, J. Am. Chem. Soc. 98 (1976) 6403.
- 33 F. Schmidtchen, G. Müller, J. Chem. Soc. Chem. Commun. 1984 1115.
- 34 J. L. Dye, Angew. Chem. 91 (1979) 613; Angew. Chem. Int. Ed. Engl. 18 (1979) 587; J. L. Dye, M. G. DeBacker, Annu. Rev. Phys. Chem. 38 (1987) 271.
- 35 J.-M. Lehn, Pure Appl. Chem. 52 (1980) 2303.
- 36
A. I. Popov,
J.-M. Lehn in
G. A. Melson (Ed.):
Coordination Chemistry of Macrocyclic Compounds,
Plenum Press, New York
1979, p. 537.
10.1007/978-1-4613-2928-2_9 Google Scholar
- 37 I. M. Kolthoff, Anal. Chem. 51 (1979) 1 R.
- 38 F. Montanari, D. Landini, F. Rolla, Top. Curr. Chem. 101 (1982) 203; E. Blasius, K.-P. Janzen, Top. Curr. Chem. 98 (1981) 163.
- 39 E. Graf, J.-M. Lehn, J. LeMoigne, J. Am. Chem. Soc. 104 (1982) 1672.
- 40 E. Graf, J.-P. Kintzinger, J.-M. Lehn, unpublished results.
- 41 B. Dietrich, J.-P. Kintzinger, J.-M. Lehn, B. Metz, A. Zahidi, J. Phys. Chem., in press.
- 42(a) D. J. Cram, K. N. Trueblood, Top. Curr. Chem. 98 (1981) 43; (b) F. De Jong, D. N. Reinhoudt in V. Gold, D. Bethell (Eds.): Adv. Phys. Org. Chem. 17 (1980) 219.
- 43 J.-M. Lehn, P. Vierling, Tetrahedron Lett. 21 (1980) 1323.
- 44 J.-P. Behr, J.-M. Lehn, P. Vierling, J. Chem. Soc. Chem. Commun. 1976, 621; Helv. Chim. Acta 65 (1982) 1853.
- 45 J.-P. Behr, J.-M. Lehn, Helv. Chim. Acta 63 (1980) 2112.
- 46 H. M. Colquhoun, J. F. Stoddart, D. J. Williams, Angew. Chem. 98 (1986) 483; Angew. Chem. Int. Ed. Engl. 25 (1986) 487.
- 47 Stability constants of about 800 and 105 L mol−1 have been obtained for binding [Ru(NH3)6]3⊕ to 12b and to the hexacarboxylate in 14, respectively (aqueous solution, pH = 7.3); J.-M. Lehn, P. Vierling, unpublished results.
- 48 J. C. Metcalfe, J. F. Stoddart, G. Jones, J. Am. Chem. Soc. 99 (1977) 8317; J. Krane, O. Aune, Acta Chem. Scand. B 34 (1980) 397.
- 49(a) J.-M. Lehn, P. Vierling, R. C. Hayward, J. Chem. Soc. Chem. Commun. 1979, 296; (b) see also K. Madan, D. J. Cram, J. Chem. Soc. Chem. Commun. 1975, 427; J. W. H. M. Uiterwijk, S. Harkema, J. Geevers, D. N. Reinhoudt, J. Chem. Soc. Chem. Commun. 1982, 200.
- 50(a) F. Vögtle, H. Sieger, W. M. Müller, Top. Curr. Chem. 98 (1981) 107; (b) K. Saigo, Kagaku to Kogyo (Osaka) 35 (1982) 90; (c) J.-L. Pierre, P. Baret, Bull. Soc. Chim. Fr. II 1983, 367; (d) E. Kimura, Top. Curr. Chem. 128 (1985) 113; (e) F. P. Schmidtchen, Top. Curr. Chem. 132 (1986) 101.
- 51(a) J.-M. Lehn, E. Sonveaux, A. K. Willard, J. Am. Chem. Soc. 100 (1978) 4914; (b) B. Dietrich, J. Guilhem, J.-M. Lehn, C. Pascard, E. Sonveaux, Helv. Chim. Acta 67 (1984) 91; (c) for other macrobicyclic receptors see also M. M. Hosseini, Thèse de Doctorat-ès-Sciences, Université;Louis Pasteur, Strasbourg 1983.
- 52 C. H. Park, H. Simmons, J. Am. Chem. Soc. 90 (1968) 2431.
- 53(a) B. Dietrich, M. W. Hosseini, J.-M. Lehn, R. B. Sessions, J. Am. Chem. Soc. 103 (1981) 1282; (b) Helv. Chim. Acta 68 (1985) 289.
- 54 J. Cullinane, R. I. Gelb, T. N. Margulis, L. J. Zompa, J. Am. Chem. Soc. 104 (1982) 3048; E. Suet, H. Handel, Tetrahedron Lett. 25 (1984) 645.
- 55 M. W. Hosseini, J.-M. Lehn, M. P. Mertes, Helv. Chim. Acta 66 (1983) 2454.
- 56 E. Kimura, M. Kodama, T. Yatsunami, J. Am. Chem. Soc. 104 (1982) 3182; J. F. Marecek, C. J. Burrows, Tetrahedron Lett. 27 (1986) 5943.
- 57 M. W. Hosseini, J.-M. Lehn, Helv. Chim. Acta 70 (1987) 1312; see also H. R. Wilson, R. J. P. Williams, J. Chem. Soc. Faraday Trans. 1 83 (1987) 1885.
- 58 B. Dietrich, D. L. Fyles, T. M. Fyles, J.-M. Lehn, Helv. Chim. Acta 62 (1979) 2763.
- 59 B. Dietrich, T. M. Fyles, J.-M. Lehn, L. G. Pease, D. L. Fyles, J. Chem. Soc. Chem. Commun. 1978, 934.
- 60 M. J. Mann, N. Pant, A. D. Hamilton, J. Chem. Soc. Chem. Commun. 1986, 158.
- 61 F. Peter, M. Gross, M. W. Hosseini, J.-M. Lehn, J. Electroanal. Chem. 144 (1983) 279.
- 62 E. Garcia-Espana, M. Micheloni, P. Paoletti, A. Bianchi, Inorg. Chim. Acta 102 (1985) L9; A. Bianchi, E. Garcia-Espana, S. Mangani, M. Micheloni, P. Orioli, P. Paoletti, J. Chem. Soc. Chem. Commun. 1987, 729.
- 63 M. F. Manfrin, L. Moggi, V. Castelvetro, V. Balzani, M. W. Hosseini, J.-M. Lehn, J. Am. Chem. Soc. 107 (1985) 6888.
- 64 J.-M. Lehn, Pure Appl. Chem. 52 (1980) 2441.
- 65 J.-M. Lehn, J. Simon, J. Wagner, Angew. Chem. 85 (1973) 621, 622; Angew. Chem. Int. Ed. Engl. 12 (1973) 578, 579.
- 66 R. J. Motekaitis, A. E. Martell, B. Dietrich, J.-M. Lehn, Inorg. Chem. 23 (1984) 1588; R. J. Motekaitis, A. E. Martell, I. Murase, Inorg. Chem. 25 (1986) 938; A. Evers, R. D. Hancock, I. Murase, Inorg. Chem. 25 (1986) 2160; D. E. Whitmoyer, D. P. Rillema, G. Ferraudi, J. Chem. Soc. Chem. Commun. 1986, 677.
- 67 J.-P. Kintzinger, J.-M. Lehn, E. Kauffmann, J. L. Dye, A. I. Popov, J. Am. Chem. Soc. 105 (1983) 7549.
- 68 D. Heyer, J.-M. Lehn, Tetrahedron Lett. 27 (1986) 5869.
- 69 T. Fujita, J.-M. Lehn, unpublished work.
- 70 T. P. Lybrand, J. A. McCammon, G. Wipff, Proc. Natl. Acad. Sci. USA 83 (1986) 833.
- 71
J.-M. Lehn in
K. J. Laidler (Ed.):
IUPAC Frontiers of Chemistry,
Pergamon Press, Oxford,
1982, p. 265.
10.1016/B978-0-08-026220-8.50025-7 Google Scholar
- 72 J. Jazwinski, J.-M. Lehn, D. Lilienbaum, R. Ziessel, J. Guilhem, C. Pascard, J. Chem. Soc. Chem. Commun. 1987, 1691.
- 73 A. Carroy, J.-M. Lehn, J. Chem. Soc. Chem. Commun. 1986, 1232.
- 74 J. Comarmond, B. Dietrich, J.-M. Lehn, R. Louis, J. Chem. Soc. Chem. Commun. 1985, 74.
- 75 Y. Okuno, K. Uoto, O. Yonemitsu, T. Tomohiro, J. Chem. Soc. Chem. Commun. 1987, 1018; J. R. Holmes, J.-M. Lehn, work in progress.
- 76 F. Kotzyba-Hibert, J.-M. Lehn, P. Vierling, Tetrahedron Lett. 21 (1980) 941.
- 77 F. Kotzyba-Hibert, J.-M. Lehn, K. Saigo, J. Am. Chem. Soc. 103 (1981) 4266.
- 78 C. Pascard, C. Riche, M. Cesario, F. Kotzyba-Hibert, J.-M. Lehn, J. Chem. Soc. Chem. Commun. 1982, 557.
- 79 J.-P. Kintzinger, F. Kotzyba-Hibert, J.-M. Lehn, A. Pagelot, K. Saigo, J. Chem. Soc. Chem. Commun. 1981, 833.
- 80 M. W. Hosseini, J.-M. Lehn, J. Am. Chem. Soc. 104 (1982) 3525; Helv. Chim. Acta 69 (1986) 587.
- 81(a) F. P. Schmidtchen, J. Am. Chem. Soc. 108 (1986) 8249; (b) J. Rebek, Jr., D. Nemeth, P. Ballester, F.-T. Lin, J. Am. Chem. Soc. 109 (1987) 3474.
- 82 J.-M. Lehn, J. Simon, A. Moradpour, Helv. Chim. Acta 61 (1978) 2407.
- 83(a) F. P. Schmidtchen, J. Org. Chem. 51 (1986) 5161; (b) J. Simon, Thèse de Doctorat d'Etat, Université; Louis Pasteur, Strasbourg 1976; see also 28 in [14], p. 305; (c) J. Rebek, Jr., B. Askew, O. Nemeth, K. Parris, J. Am. Chem. Soc. 109 (1987) 2432.
- 84 J.-P. Behr, J.-M. Lehn, J. Am. Chem. Soc. 98 (1976) 1743.
- 85
F. Cramer:
Einschlußverbindungen,
Springer, Berlin
1954;
10.1007/978-3-642-49192-4 Google ScholarM. L. Bender, M. Komiyama: Cyclodextrin Chemistry, Springer, Berlin 1978.10.1007/978-3-642-66842-5 Google Scholar
- 86(a) J. Franke, F. Vögtle, Top. Curr. Chem. 132 (1986) 137; (b) F. Vögtle, W. M. Müller, W. H. Watson, Top. Curr. Chem. 125 (1984) 131; (c) for calixarenes, see C. D. Gutsche, Top. Curr. Chem. 123 (1984) 1; Acc. Chem. Res. 16 (1983) 161; (d) for cavitands, see D. J. Cram, Science 219 (1983) 1177.
- 87 J. Canceill, A. Collet, J. Gabard, F. Kotzyba-Hibert, J.-M. Lehn, Helv. Chim. Acta 65 (1982) 1894.
- 88 M. Dhaenens, L. Lacombe, J.-M. Lehn, J.-P. Vigneron, J. Chem. Soc. Chem. Commun. 1984, 1097.
- 89 H.-J. Schneider, D. Güttes, U. Schneider, Angew. Chem. 98 (1986) 635; Angew. Chem. Int. Ed. Engl. 25 (1986) 647.
- 90 B. L. Allwood, F. H. Kohnke, J. F. Stoddart, D. J. Williams, Angew. Chem. 97 (1985) 584; Angew. Chem. Int. Ed. Engl. 24 (1985) 581.
- 91 For dissymmetric cylindrical macrotricyclic coreceptors that bind ammonium ions see: A. D. Hamilton, P. Kazanjian, Tetrahedron Lett. 26 (1985) 5735; K. Saigo, R.-L. Lin, M. Kubo, A. Youda, M. Hasegawa, Chem. Lett. 1986, 519.
- 92(a) For macrocyclic cyclophane-type receptors see also K. Odashima, T. Soga, K. Koga, Tetrahedron Lett. 21 (1980) 5311; (b) F. Diederich, K. Dick, J. Am. Chem. Soc. 106 (1984) 8024, and references cited therein.
- 93 A. J. Blacker, J. Jazwinski, J.-M. Lehn, Helv. Chim. Acta 70 (1987) 1.
- 94 I. Bidd, B. Dilworth, J. M. Lehn, unpublished work.
- 95 J. Jazwinski, A. J. Blacker, J.-M. Lehn, M. Cesario, J. Guilhem, C. Pascard, Tetrahedron Lett. 28 (1987) 6057.
- 96 J.-M. Lehn, F. Schmidt, J.-P. Vigneron, work in progress.
- 97 A. J. Blacker, M. W. Hosseini, J.-M. Lehn, unpublished work.
- 98(a) J.-P. Behr, J.-M. Lehn, unpublished work; (b) J.-M. Lehn, I. Stibor, work in progress; (c) for recent examples see J. Rebek, Jr., B. Askew, P. Ballester, C. Buhr, S. Jones, D. Nemeth, K. Williams, J. Am. Chem. Soc. 109 (1987) 5033; A. D. Hamilton, D. Van Engen, J. Am. Chem. Soc. 109 (1987) 5035.
- 99 J. Canceill, M. Cesario, A. Collet, C. Riche, C. Pascard, J. Chem. Soc. Chem. Commun. 1986, 339; J. Canceill, L. Lacombe, A. Collet, C. R. Acad. Sci. Ser. 2 Paris 304 (1987) 815.
- 100 A. D. Hamilton, J.-M. Lehn, J. L. Sessler, J. Chem. Soc. Chem. Commun. 1984, 311; J. Am. Chem. Soc. 108 (1986) 5158.
- 101 For other metalloreceptor-type species see for instance references in [15]; N. M. Richards, I. O. Sutherland, P. Camilleri, J. A. Pape, Tetrahedron Lett. 26 (1985) 3739; M. C. Gonzalez, A. C. Weedon, Can. J. Chem. 63 (1985) 602; D. H. Busch, C. Cairns in [9], p. 1; V. Thanabal, V. Krishanan, J. Am. Chem. Soc. 104 (1982) 3643; G. B. Maiya, V. Krishnan, Inorg. Chem. 24 (1985) 3253.
- 102(a)
R. Breslow,
Science
218
(1982)
432 and [21], Vol. 3, p. 473;
(b)
R. M. Kellogg,
Top. Curr. Chem.
101
(1982) 111;
(c)
I. Tabushi,
K. Yamamura,
Top. Curr. Chem.
113
(1983) 145;
(d)
Y. Murakami,
Top. Curr. Chem.
115
(1983) 107;
(e)
C. Sirlin,
Bull. Soc. Chim. Fr. II
1984, 5;
(f)
R. M. Kellogg,
Angew. Chem.
96
(1987) 769;
10.1002/ange.19840961006 Google ScholarAngew. Chem. Int. Ed. Engl. 23 (1984) 782; (g) V. T. D'Souza, M. Bender, Acc. Chem. Res. 20 (1987) 146.
- 103 J.-M. Lehn, Pure Appl. Chem. 51 (1979) 979; Ann. N. Y. Acad. Sci. 471 (1986) 41.
- 104 Y. Chao, G. R. Weisman, G. D. Y. Sogah, D. J. Cram, J. Am. Chem. Soc. 101 (1979) 4948.
- 105 J.-M. Lehn, C. Sirlin, J. Chem. Soc. Chem. Commun. 1978, 949; New J. Chem. 11 (1987) 693.
- 106 S. Sasaki, K. Koga, Heterocycles 12 (1979) 1305.
- 107 J.-P. Behr, J.-M. Lehn, J. Chem. Soc. Chem. Commun. 1978, 143.
- 108 J.-M. Lehn, T. Nishiya, Chem. Lett. 1987, 215.
- 109 M. W. Hosseini, J.-M. Lehn, M. P. Mertes, Helv. Chim. Acta 66 (1983) 2454; M. W. Hosseini, J.-M. Lehn, L. Maggiora, K. B. Mertes, M. P. Mertes, J. Am. Chem. Soc. 109 (1987) 537.
- 110 G. M. Blackburn, G. R. J. Thatcher, M. W. Hosseini, J.-M. Lehn, Tetrahedron Lett. 28 (1987) 2779.
- 111 M. W. Hosseini, J.-M. Lehn, J. Chem. Soc. Chem. Commun. 1985, 1155; J. Am. Chem. Soc. 109 (1987) 7047.
- 112 P. G. Yohannes, M. P. Mertes, K. B. Mertes, J. Am. Chem. Soc. 107 (1985) 8288.
- 113 S. Sasaki, M. Shionoya, K. Koga, J. Am. Chem. Soc. 107 (1985) 3371.
- 114 H.-D. Lutter, F. Diederich, Angew. Chem. 98 (1986) 1125; Angew. Chem. Int. Ed. Engl. 25 (1986) 1125.
- 115 F. M. Menger, M. Ladika, J. Am. Chem. Soc. 109 (1987) 3145.
- 116 E. T. Kaiser, D. S. Lawrence, Science (Washington) 226 (1984) 505.
- 117 See, for instance A. R. Fersht, J. P. Shi, A. J. Wilkinson, D. M. Blow, P. Carter, M. M. Y. Waye, G. P. Winter, Angew. Chem. 96 (1984) 455; Angew. Chem. Int. Ed. Engl. 23 (1984) 467; J. A. Gerlt, Chem. Rev. 87 (1987) 1079; A. J. Russell, A. R. Fersht, Chem. Rev. 328 (1987) 496.
- 118 A. Tramontano, K. D. Janda, R. A. Lerner, Science (Washington) 234 (1986) 1566; S. J. Pollack, J. W. Jacobs, P. G. Schultz, Science (Washington) 234 (1986) 1570; R. A. Lerner, A. Tramontano, Trends Biochem. Sci. 12 (1987) 427.
- 119 Selective cation transport was one of the initial objectives of our work on cryptates; see Refs. [29a, 125].
- 120 J.-M. Lehn in G. Spach (Ed.): Physical Chemistry of Transmembrane Ion Motions, Elsevier, Amsterdam, 1983, p. 181.
- 121 W. Simon, W. E. Morf, P. C. Meier, Struct. Bonding (Berlin) 16 (1973) 113; W. E. Morf, D. Amman, R. Bissig, E. Pretsch, W. Simon in [19], Vol. 1, p. 1.
- 122 J.-P. Behr, J.-M. Lehn, J. Am. Chem. Soc. 95 (1973) 6108.
- 123 B. C. Pressman, Annu. Rev. Biochem. 45 (1976) 501.
- 124 J. D. Lamb, J. J. Christensen in [21], Vol. 3, p. 571.
- 125 M. Kirch, J.-M. Lehn, Angew. Chem. 87 (1975) 542; Angew. Chem. Int. Ed. Engl. 14 (1975) 555; M. Kirch, Thèse de Doctorat-ès-Sciences, Université Louis Pasteur, Strasbourg 1980.
- 126 J.-P. Behr, M. Kirch, J.-M. Lehn, J. Am. Chem. Soc. 107 (1985) 241.
- 127 T. M. Fyles, Can. J. Chem. 65 (1987) 884.
- 128 M. Castaing, F. Morel, J.-M. Lehn, J. Membr. Biol. 89 (1986) 251; M. Castaing, J.-M. Lehn, J. Membr. Biol. 97 (1987) 79.
- 129 E. Bacon, L. Jung, J.-M. Lehn, J. Chem. Res. (S) 1980, 136.
- 130 H. Tsukube, Angew. Chem. 94 (1982) 312; Angew. Chem. Int. Ed. Engl. 21 (1982) 304; Angew. Chem. Suppl. 1982, 575.
- 131 Anion transport with anion cryptands has been observed recently: T. M. Fyles, J.-M. Lehn, unpublished results.
- 132 A. Harada, S. Takahashi, J. Chem. Soc. Chem. Commun. 1987, 527.
- 133 J. J. Grimaldi, J.-M. Lehn, J. Am. Chem. Soc. 101 (1979) 1333.
- 134 S. S. Anderson, I. G. Lyle, R. Paterson, Nature (London) 259 (1976) 147.
- 135 J. J. Grimaldi, S. Boileau, J.-M. Lehn, Nature (London) 265 (1977) 229.
- 136 J. K. Hurst, D. H. P. Thompson, J. Membr. Sci. 28 (1986), and references cited therein; I. Tabushi, S.-i. Kugimiya, Tetrahedron Lett. 25 (1984) 3723.
- 137 M. Okahara, Y. Nakatsuji, Top. Curr. Chem. 128 (1985) 37.
- 138 A. Hriciga, J.-M. Lehn, Proc. Natl. Acad. Sci. USA 80 (1983) 6426.
- 139 R. Frank, H. Rau, Z. Naturforsch. A37 (1982) 1253.
- 140 I. Tabushi, S.-i. Kugimiya, J. Am. Chem. Soc. 107 (1985) 1859.
- 141 S. Shinkai, O. Manabe, Top. Curr. Chem. 121 (1984) 67.
- 142 D. W. Urry, Top. Curr. Chem. 128 (1985) 175.
- 143 R. Nagaraj, P. Balaram, Acc. Chem. Res. 14 (1981) 356; R. O. Fox, Jr., F. M. Richards, Nature (London) 300 (1982) 325.
- 144 J.-P. Behr, J.-M. Lehn, A.-C. Dock, D. Moras, Nature (London) 295 (1982) 526.
- 145 U. F. Kragten, M. F. M. Roks, R. J. M. Nolte, J. Chem. Soc. Chem. Commun. 1985, 1275.
- 146 I. Tabushi, Y. Kuroda, K. Yokota, Tetrahedron Lett. 23 (1982) 4601.
- 147 J.-H. Fuhrhop, U. Liman, J. Am. Chem. Soc. 106 (1984) 4643.
- 148
J.-H. Fuhrhop,
U. Liman,
H. H. David,
Angew. Chem.
97
(1985) 3371
10.1002/ange.19850970427 Google ScholarAngew. Chem. Int. Ed. Engl. 24 (1985) 339.
- 149 J.-M. Lehn, J. Simon, Helv. Chim. Acta 60 (1977) 141.
- 150 J.-M. Lehn, M. E. Stubbs, J. Am. Chem. Soc. 96 (1974) 4011.
- 151 W. Fischer, J. Brickmann, P. Läger, Biophys. Chem. 13 (1981) 105.
- 152 C. Etchebest, S. Ranganathan, A. Pullman, FEBS Letters 173 (1984) 301.
- 153 For an earlier use of the intersection sign, see: E. Kauffmann, J. L. Dye, J.-M. Lehn, A. I. Popov, J. Am. Chem. Soc. 102 (1980) 2274.
- 154 A. G. Amit, R. A. Mariuzza, S. E. V. Phillips, R. J. Poljak, Science (Washington) 233 (1986) 747; H. M. Geysen, J. A. Tainer, S. J. Rodda, T. J. Mason, H. Alexander, E. D. Getzoff, R. A. Lerner, Science (Washington) 235 (1987) 1184.
- 155 M. M. Harding, J.-M. Lehn, unpublished work.
- 156 D. A. Tomalia, M. Hall, D. M. Hedstrand, J. Am. Chem. Soc. 109 (1987) 1601, and references cited therein.
- 157 G. R. Newkome, Z.-q. Yao, G. R. Baker, V. K. Gupta, P. S. Russo, M. J. Saunders, J. Am. Chem. Soc. 108 (1986) 849; G. R. Newkome, G. R. Baker, M. J. Saunders, P. S. Russo, V. K. Gupta, Z.-q. Yao, J. E. Miller, K. Bouillion, J. Chem. Soc. Chem. Commun. 1986, 752.
- 158 H. M. McConnell, L. K. Tamm, R. M. Weiss, Proc. Natl. Acad. Sci. USA 81 (1984) 3249; R. M. Weiss, H. M. McConnell, Nature (London) 310 (1984) 47.
- 159 T. Kunitake, Y. Okahata, M. Shimomura, S.-i. Yasunami, K. Takarabe, J. Am. Chem. Soc. 103 (1981) 5401; N. Nakashima, S. Asakuma, T. Kunitake, J. Am. Chem. Soc. 107 (1985) 509.
- 160 J. H. Fendler: Membrane Mimetic Chemistry, Wiley, New York 1982.
- 161
H. Kuhn,
D. Moebius,
Angew. Chem.
83
(1971) 672;
10.1002/ange.19710831705 Google ScholarAngew. Chem. Int. Ed. Engl. 10 (1971) 620.
- 162
D. Moebius,
Acc. Chem. Res.
14
(1981) 63;
Ber. Bunsenges. Phys. Chem.
82
(1978) 848;
Z. Phys. Chem. (Munich)
154
(1987) 121.
10.1524/zpch.1987.154.Part_1_2.121 Google Scholar
- 163 J. A. Hayward (Ed.): New technological applications of phospholipid bilayers, thin films and vesicles, Plenum Press, London 1986.
- 164 J. Sagiv in [163]; L. Netzer, J. Sagiv, J. Am. Chem. Soc. 105 (1983) 674.
- 165 H.-H. Hub, B. Hupfer, H. Koch, H. Ringsdorf, Angew. Chem. 92 (1980) 962; Angew. Chem. Int. Ed. Engl. 19 (1980) 938; L. Gros, H. Ringsdorf, H. Schupp, Angew. Chem. Int. Ed. Engl. 93 (1981) 311 and Angew. Chem. Int. Ed. Engl. 20 (1981) 305; see also: H. Ringsdorf, B. Schlarb, J. Venzmer, Angew. Chem. Int. Ed. Engl. 100 (1988) 117 and Angew. Chem. Int. Ed. Engl. 27 (1988) 113.
- 166 G. Wegner, Chimia 36 (1982) 63; C. M. Paleos, Chem. Rev. 14 (1985) 45.
- 167 H. Kuhn, Pure Appl. Chem. 53 (1981) 2105.
- 168(a) J.-H. Fuhrhop, J. Mathieu, Angew. Chem. 96 (1984) 124; Angew. Chem. Int. Ed. Engl. 23 (1984) 100; (b) J.-H. Fuhrhop, D. Fritsch, Acc. Chem. Res. 19 (1986) 130; (c) Y. Okahata, Acc. Chem. Res. 19 (1986) 57.
- 169(a)
V. Balzani (Ed.):
Supramolecular Photochemistry,
Reidel, Dordrecht, Netherlands
1987;
10.1007/978-94-009-3979-0_1 Google Scholar(b) J.-M. Lehn in [169a], p. 29.
- 170 J.-C. Rodriguez-Ubis, B. Alpha, D. Plancherel, J.-M. Lehn, Helv. Chim. Acta 67 (1984) 2264.
- 171 B. Alpha, J.-M. Lehn, G. Mathis, Angew. Chem. 99 (1987) 259; Angew. Chem. Int. Ed. Engl. 26 (1987) 266; B. Alpha, V. Balzani, J.-M. Lehn, S. Perathoner, N. Sabbatini, Angew. Chem. Int. Ed. Engl. 99 (1987) 1310 and Angew. Chem. Int. Ed. Engl. 26 (1987) 1266; N. Sabbatini, S. Perathoner, V. Balzani, B. Alpha, J.-M. Lehn, in Ref. [169a], p. 187.
- 172(a) H. Bouas-Laurent, A. Castellan, J.-P. Desvergne, Pure Appl. Chem. 52 (1980) 2633; (b) H. Bouas-Laurent, A. Castellan, M. Daney, J.-P. Desvergne, G. Guinand, P. Marsau, M.-H. Riffaud, J. Am. Chem. Soc. 108 (1986) 315.
- 173 J. P. Konopelski, F. Kotzyba-Hibert, J.-M. Lehn, J.-P. Desvergne, F. Fagès, A. Castellan, H. Bouas-Laurent, J. Chem. Soc. Chem. Commun. 1985, 433.
- 174 D. F. Eaton, Tetrahedron 43 (1987) 1551, and references cited therein.
- 175 A. Guarino, J. Photochem. 35 (1986) 1.
- 176 M. Gubelmann, J.-M. Lehn, J. L. Sessler, A. Harriman, J. Chem. Soc., Chem. Commun., in press.
- 177 V. Balzani, N. Sabbatini, F. Scandola, Chem. Rev. 86 (1986) 319.
- 178 Photoactive units may photoxidize completed substrates [93] and effect DNA photocleavage: A. J. Blacker, J. Jazwinski, J.-M. Lehn, F.-X. Wilhelm, J. Chem. Soc. Chem. Commun. 1986, 1035.
- 179(a) D. S. Chemla, J. Zyss (Eds.): Non-linear Optical Properties of Organic Molecules and Crystals, Vol. 1, Academic Press, New York 1987; (b) J.-M. Lehn in [179a], p. 215; (c) J. F. Nicoud, R. J. Twieg in [179a], p. 221.
- 180 M. Takagi, K. Ueno, Top. Curr. Chem. 121 (1984) 39; H.-G. Löhr, F. Vögtle, Acc. Chem. Res. 18 (1985) 65; R. Klink, D. Bodart, J.-M. Lehn, B. Helfert, R. Bitsch, Eur. Pat. Apl. 83100281.1 (14 January 1983), Merck GmbH.
- 181 R. C. Haddon, A. A. Lamola, Proc. Natl. Acad. Sci. USA 82 (1985) 1874; R. W. Munn, Chem. Br. 1984, 518; J. Simon, J.-J. André, A. Skoulios, Nouv. J. Chim. 10 (1986) 295; J. Simon, F. Tournilhac, J.-J. André, New J. Chem. 11 (1987) 383, and references cited therein; for other related work see, for instance: J. K. Nagle, J. S. Bernstein, R. C. Young, T. J. Meyer, Inorg. Chem. 20 (1981) 1760; E. T. T. Jones, O. M. Chyan, M. S. Wrighton, J. Am. Chem. Soc. 109 (1987) 5526.
- 182 T. S. Arrhenius, M. Blanchard-Desce, M. Dvolaitzky, J.-M. Lehn, J. Malthête, Proc. Natl. Acad. Sci. USA 83 (1986) 5355.
- 183 Biological effectors may also be sought: I. Tabushi, T. Nishiya, M. Shimomura, T. Kunitake, H. Inokuchi, T. Yagi, J. Am. Chem. Soc. 106 (1984) 219.
- 184 R. Schwyzer, A. Tun-Kyi, M. Caviezel, P. Moser, Helv. Chim. Acta 53 (1970) 15; Experientia 26 (1970) 577; see also [1], p. 19.
- 185(a) S. Shinkai, Pure Appl. Chem. 59 (1987) 425; (b) D. A. Gustowski, M. Delgado, V. J. Gatto, L. Echegoyen, G. W. Gokel, J. Am. Chem. Soc. 108 (1986) 7553, and references cited therein.
- 186 J.-M. Lehn, J. Malthête, A.-M. Levelut, J. Chem. Soc. Chem. Commun. 1985, 1794.
- 187 For phthalocyanine derived columnar mesophases see: D. Masurel, C. Sirlin, J. Simon, New J. Chem. 11 (1987) 455, and references cited therein.
- 188 E. Carafoli, J. T. Penniston, Sci. Am. 253 (1985) No. 11, p. 50; Spektrum Wiss. 1986, No. 1, p. 76; T. Hiraoki, H. J. Vogel, J. Cardiovasc. Pharm. 10 (Suppl. 1) (1987) S 14.
- 189 I. Tabushi, S.-i. Kugimiya, T. Sasaki, J. Am. Chem. Soc. 107 (1985) 5159, and references cited therein.
- 190 D. Pörchske, M. Eigen, J. Mol. Biol. 62 (1971) 361, and references cited therein.
- 191 J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, Proc. Natl. Acad. Sci. USA 84 (1987) 2565; J.-M. Lehn, A. Rigault, unpublished results.
- 192 K. E. Drexler, Proc. Natl. Acad. Sci. USA 78 (1981) 5275; C. Joachim, J.-P. Launay, Nouv. J. Chim. 8 (1984) 723.
- 193 Opportunities in Chemistry (“Pimentel-Report”), National Academy Press, Washington, DC, USA, pp. 219f.
Citing Literature
January 1988
Pages 89-112