Structure Formation and Molecular Mobility in Water and in Aqueous Solutions†
Prof. Dr. E. Wicke
Institut für Physikalische Chemie der Universität Münster (Germany)
Search for more papers by this authorProf. Dr. E. Wicke
Institut für Physikalische Chemie der Universität Münster (Germany)
Search for more papers by this authorDedicated to Prof. W. Klemm on the occasion of his 70th birthday
Abstract
The study of the structure of water and of aqueous solutions has recently received new impetus from the efforts at commercial desalineation of sea water and from developments in molecular biology. The current view that, apart from single molecules, water contains only one type of structural element, namely “flickering” network structures with tetrahedrally hydrogen-bonded water molecules (two-states model) is proving inadequate in the interpretation of new experimental data and in the calculation of thermodynamic functions. After a critical discussion of the basis of this model and of the concept of hydrogen bonds, a second kind of structural element, i.e. a third state, is suggested: small aggregates of molecules containing mainly non-tetrahedral hydrogen bonds as well as some tetrahedral ones, and packed more densely than allowed by the lattice-like structure. These aggregates – dimers to hexamers – can be regarded as the primary products of disruption of the network structures, and displace the latter as structural components in water with increasing temperature or concentration of solutes. This “combined” model allows a consistent interpretation of the properties of water and of the various effects of dissolved substances.
References
- 1 N. Bjerrum, Dan. Mat. Fys. Medd. 27, No. 1, S. 3 (1951); Chem. and Ind. 1952, 364.
- 2 O. J. Samoilow: Die Struktur wäβriger Elektrolytlösungen und die Hydratation von Ionen. Teubner, Leipzig 1961.
- 3 S. W. Peterson and H. A. Levy, Physic. Rev. 92, 1082 (1953); Acta crystallogr. 10, 70 (1957); R. Chidambaran, Acta crystallogr. 14, 467 (1961).
- 4 J. B. Hasted et al., J. chem. Physics 20, 1452 (1952); cf. also M. Weissmann and N. V. Cohan, J. chem. Physics 43, 119 (1965).
- 5 G. C. Pimentel and A. L. McClellan: The Hydrogen Bond. Freeman, New York 1960, pp. 100, 226, 255.
- 6
R. Brill,
Angew. Chem.
74, 895
(1962),
Angew. Chem. internat. Edit.
1, 563
(1962).
10.1002/anie.196205631 Google Scholar
- 7 C. W. F. T. Pistorius et al., J. chem. Physics 38, 600 (1963).
- 8 W. B. Kamb and S. K. Datta, Nature (London) 187, 140 (1960).
- 9 H. S. Frank: Desalineation Research Conference. Publication No. 942 Nat. Acad. Sci., Nat. Res. Conference (1962), p. 141.
- 10 A. Eucken, Nachr. Akad. Wiss. Göttingen, math.-physik. Kl., IIa math.-physik.-chem. Abt. 1946, 38; Z. Elektrochem. angew. physik. Chem. 52, 255 (1948); Z. Elektrochem. angew. physik. Chem. 53, 102 (1949).
- 11 J. D. Bernal and R. H. Fowler, J. chem. Physics 1, 515 (1933).
- 12 M. D. Danford and H. A. Levy, J. Amer. chem. Soc. 84, 3965 (1962).
- 13a
L. Pauling in
L. Hadži:
Hydrogen Bonding.
Pergamon Press, London
1959, p. 1.
10.1016/B978-0-08-009140-2.50004-X Google Scholar
- 13b L. Pauling: Nature of the Chemical Bond. Cornell University Press, Ithaca, N. Y., 1960, p. 464.
- 14 J. Morgan and B. E. Warren, J. chem. Physics 6, 666 (1938).
- 15 J. Lennard-Jones and J. A. Pople, Proc. Roy. Soc. (London) A 205, 155 (1951); J. A. Pople, Proc. Roy. Soc. (London) A 205, 163 (1951).
- 16 G. Oster and J. G. Kirkwood, J. chem. Physics 11, 175 (1943).
- 17 G. Némethy and H. A. Scheraga, J. chem. Physics 36, 3382, 3401 (1962).
- 18 H. S. Frank and W. Y. Wen, Discuss. Faraday Soc. 24, 133 (1957).
- 19 H. S. Frank, Proc. Roy. Soc. (London) A 247, 481 (1958).
- 20 R. P. Marchi and H. Eyring, J. physic. Chem. 68, 221 (1964).
- 21 H. S. Frank and A. S. Quist, J. chem. Physics 34, 604 (1961).
- 22 M. van Thiel, E. D. Becker, and G. C. Pimentel, J. chem. Physics 27, 486 (1957).
- 23a C. M. Davis and T. A. Litovitz, J. chem. Physics 42, 2563 (1965).
- 23b V. Vand and W. A. Senior, J. chem. Physics 43, 1869, 1873, 1878 (1965).
- 23c K. Buijs and G. R. Choppin, J. chem. Physics 39, 2035, 2042 (1963).
- 23d D. F. Hornig, J. chem. Physics 40, 3119 (1964).
- 23e K. Buijs and G. R. Choppin, J. chem. Physics 40, 3120 (1964).
- 23f T. T. Wall and D. F. Hornig, J. chem. Physics 43, 2079 (1965).
- 23g H. S. Frank, Federat. Proc. 24, No. 2, Part III, March-April 1965.
- 23h G. E. Walrafen, J. chem. Physics 40, 3249 (1964).
- 23i W. Luck, Ber. Bunsenges. physik. Chem. 69, 626 (1965) Ber. Bunsenges. physik. Chem. 67, 186 (1963).
- 24 G. W. Brady, Z. Elektrochem. Ber. Bunsenges. physik. Chem. 28, 464 (1958).
- 25 A. Eucken, Nachr. Akad. Wiss. Göttingen, math.-physik. Kl., math.-physik.-chem. Abt. 1947, 33.
- 26
O. J. Samoilow,
Discuss. Faraday Soc.
24, 141
(1957).
10.1039/df9572400141 Google Scholar
- 26a A. Eucken, Z. Elektrochem. angew. physik. Chem. 52, 6 (1948).
- 27 M. Eigen and E. Wicke, Z. Elektrochem. angew. physik. Chem. 55, 354 (1951).
- 28
E. Wicke,
M. Eigen, and
Th. Ackermann,
Z. physik. Chem. N. F.
1, 340
(1954).
10.1524/zpch.1954.1.5_6.340 Google Scholar
- 29 Th. Ackermann, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 62, 411 (1958).
- 30 Th. Ackermann et al., unpublished work.
- 31 Th. Ackermann, Z. physik. Chem. N.F. 27, 253 (1961).
- 32 H. D. Beckey, Z. Naturforsch. 14a, 712 (1959); Z. Naturforsch. 15a, 822 (1960).
- 33 J. Rudolph and H. Zimmermann, Z. physik. Chem. N.F. 43, 311 (1964).
- 34
Th. Ackermann,
Discuss. Faraday Soc.
24, 180
(1957).
10.1039/df9572400180 Google Scholar
- 35 M. Eigen and L. De Maeyer, Z. Elektrochem., Ber. Bunsenges: physik. Chem. 59, 986 (1955).
- 36 M. Eigen, Angew. Chem. 75, 489 (1963); Angew. Chem. internat. Edit. 3, 1 (1964).
- 37 Th. Ackermann and F. Schreiner, Z. Elektrochem., Ber Bunsenges. physik. Chem. 62, 1143 (1958); F. Schreiner, Dissertation, Universität Hamburg, 1959.
- 38 H. S. Frank and M. W. Evans, J. chem. Physics 13, 507 (1945).
- 39 W. F. Claussen, J. chem. Physics 19, 259, 662, 1425 (1951).
- 40 M. v. Stackelberg and H. R. Müller, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 58, 25 (1954); Z. Elektrochem., Ber. Bunsenges. physik. Chem. 62, 130 (1958).
- 41 W. G. Knox et al., Dechema-Monographien, Vol. 47. Verlag Chemie, Weinheim/Bergstr. 1962, p. 839.
- 42 H. A. Scheraga, Ber. Bunsenges. Physik. Chem. 68, 838 (1964).
- 42a J. B. Hasted et al., J. chem. Physics 29, 17 (1958).
- 43
H. Strehlow:
Magnetische Kernresonanz und chemische Struktur
Steinkopff, Darmstadt
1962;
10.1007/978-3-662-43201-3 Google ScholarBer. Bunsenges. physik. Chem. 67, 250 (1963).
- 44 H. G. Hertz and W. Spalthoff, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 63, 1096 (1959).
- 45 H. G. Hertz, Ber. Bunsenges. physik. Chem. 67, 311 (1963);
- 46a H. G. Hertz and M. D. Zeidler, Ber. Bunsenges. physik. Chem. 67, 774 (1963); M. D. Zeidler, Dissertation, Universität Münster, 1963.
- 46b H. G. Hertz and M. D. Zeidler, Ber. Bunsenges. physik. Chem. 68, 821 (1964).
- 47 H. G. Hertz, Ber. Bunsenges. physik. Chem. 68, 907 (1964).