Single-Atom Ligation of Four Different Alcohols at One Silicon Center: Methodology Development and Proof of Concept
Chao Wang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorXin Xu
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorXinyu Zhang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorHaifeng Lin
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorJie Wang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorPathan Mosim Amin
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Youliang Wang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
E-mail: [email protected]
Search for more papers by this authorChao Wang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorXin Xu
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorXinyu Zhang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorHaifeng Lin
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorJie Wang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorPathan Mosim Amin
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Youliang Wang
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049 P.R. China
E-mail: [email protected]
Search for more papers by this authorAbstract
While critical and indispensable in diversified areas, organosilicon compounds are not naturally occurring and all rely on chemical synthesis. The de novo synthesis of them via quadruple substitutions of tetrachlorosilane was one of the most straightforward and common practices but confronted over-substitution challenges for heteroleptic silanes, especially the ones with four different substituents. Although selective and iterative substitutions at silicon have achieved notable achievements, methods for fully heteroleptic tetraalkoxysilanes are still lacking. Herein, we established the key dephenylative etherification reaction coupling phenylsilanes and alcohols to alkoxysilanes and then developed triphenylchlorosilane (Ph3SiCl) as the surrogate to tetrachlorosilane for the iterative and controllable ligation of four different alcohols to one silicon center as fully heteroleptic tetraalkoxysilanes. Mechanistic studies revealed the unusual transformations of Wheland intermediates into both silicon cations and silylated phenylhalonium ions in low and comparable activation barriers.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202506444-sup-0001-SuppMat.pdf33.4 MB | Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388–405.
- 2R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779–3798.
- 3E. Rémond, C. Martin, J. Martinez, F. Cavelier, Chem. Rev. 2016, 116, 11654–11684.
- 4S. M. Sieburth, C. J. Manly, D. W. Gammon, Pestic. Sci. 1990, 28, 289–307.
- 5B. A. Kamino, T. P. Bender, Chem. Soc. Rev. 2013, 42, 5119.
- 6D. Sun, Z. Ren, M. R. Bryce, S. Yan, J. Mater. Chem. 2015, C3, 9496–9508.
- 7Z. Ren, S. Yan, Prog. Mater. Sci. 2016, 83, 383–416.
- 8A. M. Muzafarov, Silicon Polymers, Springer, Berlin, Heidelberg, 2011.
- 9R. G. Jones, W. Ando, J. Chojnowski, Silicon-Containing Polymers: The Science and Technology of their Synthesis and Applications, Springer, Dordrecht, 2013.
- 10H. Zhou, J. Han, N. Nöthling, M. M. Lindner, J. Jenniches, C. Kühn, N. Tsuji, L. Zhang, B. List, J. Am. Chem. Soc. 2022, 144, 10156–10161.
- 11S. R. Docherty, D. P. Estes, C. Coperet, Helv. Chim. Acta 2018, 101, e1700298.
- 12Y. Komata, M. Yoshikawa, Y. Tamura, H. Wada, A. Shimojima, K. Kuroda, Chem. Asian J. 2016, 11, 3225–3233.
- 13W. Yuan, P. Smirnov, M. Oestreich, Chem 2018, 4, 1443–1450.
- 14D. Hartmann, S. Branera, L. Greb, Chem. Commun. 2021, 57, 8572–8575.
- 15F. S. Tschernuth, L. Bichlmaier, S. Stigler, S. Inoue, Eur. J. Inorg. Chem. 2023, 26, e202300388.
- 16B. Assoah, J. R. Vale, E. Kalenius, L. F. Veiros, N. R. Candeias, Eur. J. Org. Chem. 2018, 2018, 2910–2917.
- 17T. He, H. F. T. Klare, M. Oestreich, Nature 2023, 623, 538–543.
- 18H.-J. Lee, C. Kwak, D.-P. Kim, H. Kim, Green Chem. 2021, 23, 1193–1199.
- 19X. Fan, M. Zhang, Y. Gao, Q. Zhou, Y. Zhang, J. Yu, W. Xu, J. Yan, H. Liu, Z. Lei, Y. C. Ter, S. Chanmungkalakul, Y. Lum, X. Liu, G. Cui, J. Wu, Nat. Chem. 2023, 15, 666–676.
- 20W. Zhu, J. Zhou, S. Li, K. Gao, L. Zhang, Y. Wang, S. He, J. Hu, B. Li, Y. Li, China National Petroleum Corporation, CN 114292356 B, 2023.
- 21M. C. Parrott, M. Finniss, J. C. Luft, A. Pandya, A. Gullapalli, M. E. Napier, J. M. DeSimone, J. Am. Chem. Soc. 2012, 134, 7978–7982.
- 22N. R. Burton, D. A. Polasky, F. Shikwana, S. Ofori, T. Yan, D. J. Geiszler, F. d. V. Leprevost, A. I. Nesvizhskii, K. M. Backus, J. Am. Chem. Soc. 2023, 145, 21303–21318.
- 23J. Gao, A. Mfuh, Y. Amako, C. M. Woo, J. Am. Chem. Soc. 2018, 140, 4259–4268.
- 24J. Szychowski, A. Mahdavi, J. J. L. Hodas, J. D. Bagert, J. T. Ngo, P. Landgraf, D. C. Dieterich, E. M. Schuman, D. A. Tirrell, J. Am. Chem. Soc. 2010, 132, 18351–18360.
- 25C. M. Woo, A. T. Iavarone, D. R. Spiciarich, K. K. Palaniappan, C. R. Bertozzi, Nat. Methods 2015, 12, 561–567.
- 26G. Stork, G. Kim, J. Am. Chem. Soc. 1992, 114, 1087–1088.
- 27L. Fensterbank, M. Malacria, S. M. Sieburth, Synthesis 1997, 1997, 813–854.
10.1055/s-1997-1295 Google Scholar
- 28A. Cusak, Chem. Eur. J. 2012, 18, 5800–5824.
- 29M. Bols, T. Skrydstrup, Chem. Rev. 1995, 95, 1253–1277.
- 30D. R. Gauthier Jr, K. S. Zandi, K. J. Shea, Tetrahedron 1998, 54, 2289–2338.
- 31S. Bracegirdlea, E. Anderson, Chem. Soc. Rev. 2010, 39, 4114–4129.
- 32P. T. Kaye, R. A. Learmonth, J. Chromatogr. A. 1990, 503, 437–441.
- 33H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004–2021.
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 34V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–2599.
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CAS PubMed Web of Science® Google Scholar
- 35W. C. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057–3064.
- 36J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2014, 53, 9430–9448.
- 37S. Sun, J. A. Homer, C. J. Smedley, Q. Cheng, K. B. Sharpless, J. E. Moses, Chem 2023. 9, 2128–2143.
- 38J. A. Homer, L. Xu, N. Kayambu, Q. Zheng, E. J. Choi, B. M. Kim, K. B. Sharpless, H. Zuilhof, J. Dong, J. E. Moses, Nat. Rev. Methods Primers 2023, 3, 58.
- 39D. Zeng, W. Deng, X. Jiang, Natl. Sci. Rev. 2023, 10, nwad123.
- 40S. Li, P. Wu, J. E. Moses, K. B. Sharpless, Angew. Chem. Int. Ed. 2017, 56, 2903–2908.
- 41C. Eaborn, J. Organomet. Chem. 1975, 100, 43–57.
- 42B. O. Pray, L. H. Sommer, G. M. Goldberg, G. T. Kerr, P. A. Di Giorgio, F. C. Whitmore, J. Am. Chem. Soc. 1948, 70, 433–434.
- 43H. F. Motiwala, A. M. Armaly, J. G. Cacioppo, T. C. Coombs, K. R. K. Koehn, V. M. Norwood IV, J. Aubé, Chem. Rev. 2022, 122, 12544–12747.
- 44P. Ertl, T. A. Schuhmann, J. Nat. Prod. 2019, 82, 1258–1263.
- 45Y. Ma, B. Wang, L. Zhang, Z. Hou, J. Am. Chem. Soc. 2016, 138, 3663–3666.
- 46A. G. M. Barrett, I. A. O' Neil, J. Org. Chem. 1988, 53, 1815–1817.
- 47K. Kanda, K. Endo, T. Shibata, Org. Lett. 2010, 12, 1980–1983.
- 48H. Yoshida, R. Yoshida, M. Mukae, J. Ohshita, K. Takaki, Chem. Lett. 2011, 40, 1272–1274.
- 49R. A. Heald, P. Jackson, P. Savy, M. Jones, E. Gancia, B. Burton, R. Newman, J. Boggs, E. Chan, J. Chan, E. Choo, M. Merchant, P. Rudewicz, M. Ultsch, C. Wiesmann, Q. Yue, M. Belvin, S. Price, J. Med. Chem. 2012, 55, 4594–4604.
- 50Y. Wu, Y. Huang, X. Chen, P. Wang, Org. Lett. 2020, 22, 6657–6661.
- 51Y. Nakamura, S. Ozawa, S. Yoshida, T. Hosoya, Chem. Lett. 2019, 48, 1296–1299.
- 52N. Chernyak, A. S. Dudnik, C. Huang, V. Gevorgyan, J. Am. Chem. Soc. 2010, 132, 8270–8272.
- 53S. H. Cho, J. F. Hartwig, J. Am. Chem. Soc. 2013, 135, 8157–8160.
- 54S. Yoshida, Y. Hazama, K. Kanemoto, Y. Nakamura, T. Hosoya, Chem. Lett. 2019, 48, 742–745.
- 55A. Dahiya, C. Fricke, F. Schoenebeck, J. Am. Chem. Soc. 2020, 142, 7754–7759.
- 56S. Yoshida, K. Shimomori, T. Nonaka, T. Hosoya, Chem. Lett. 2015, 44, 1324–1326.
- 57M. Oishi, Y. Kawakami, Org. Lett. 1999, 1, 549–552.
- 58H. Jiang, H. D. A. Simon, E. Irran, H. F. T. Klare, M. Oestreich, Organometallics 2023, 42, 48–54.
- 59T, T. M., P. Hrobárik, H. F. T. Klare, M. Kaupp, M. Oestreich, J. Am. Chem. Soc. 2014, 136, 6912–6915.
- 60J. Fuchs, H. F. T. Klare, M. Oestreich, ACS Catal. 2017, 7, 8338–8342.
- 61S. Rendler, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47, 5997–6000.
- 62H. Gao, S. Kwon, H.-Y. Kwon, E. Irran, H. F. T. Klare, M.-H. Baik, M. Oestreich, Angew. Chem. Int. Ed. 2024, 63, e202409582.
- 63S. Guha, V. Rajeshkumar, S. S. Kotha, G. Sekar, Org. Lett. 2015, 17, 406–409.
- 64B. Karimi, G. R. Ebrahimian, H. Seradj, Org. Lett. 1999, 1, 1737–1739.
- 65Y. Zhu, W. Yi, C. Cai, New J. Chem. 2013, 37, 890–892.
- 66J. Lopez, J. Sierra, M. Cortes, Chem. Lett. 1986, 15, 2073–2074.
10.1246/cl.1986.2073 Google Scholar
- 67R. J. Wehmschulte, K. K. Laali, G. L. Borosky, D. R. Powell, Organometallics 2014, 33, 2146–2149.
- 68A. Schäfer, W. Saak, D. Haase, T. Müller, Angew. Chem. Int. Ed. 2012, 51, 2981–2984.
- 69N. Li, M. Li, J. Gao, Z. Zhang, J. Xie, J. Org. Chem. 2022, 87, 10876–10889.
- 70B. Assoah, J. R. Vale, E. Kalenius, L. F. Veiros, R. N. Candeias, Eur. J. Org. Chem. 2018, 2018, 2910–2917.
- 71K. Iseki, S. Mizuno, Y. Kuroki, Y. Kobayashi, Tetrahedron 1999, 55, 977–988.
- 72P. Patschinski, C. Zhang, H. Zipse, J. Org. Chem. 2014, 79, 8348–8357.
- 73P. Patschinski, C. Zhang, H. Zipse, Org. Lett. 2015, 17, 3318–3321.
- 74C. Eaborn, O. W. Steward, Proc. Chem. Soc. 1963, 33–72.
- 75C. Eaborn, O. W. Steward, J. Chem. Soc. 0, 1965, 521–527.
- 76J. Dubac, P. Mazerolles, M. Joly, J. Organomet. Chem. 1977, 128, C18–C20.
- 77H. Sakurai, M. Murakami, K. Takeuchi, C. Kabuto, J. Organomet. Chem. 1988, 341, 133–143.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.