Organocatalyzed Copolymerization of CO, Se, and Oxetane: O/Se Exchange Reaction Determining Chain Structure
Xinchen Yue
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorWenqi Guo
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorXiong Liu
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorQinglei Yu
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorXiaoxian Lu
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorCorresponding Author
Prof. Chengjian Zhang
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xinghong Zhang
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorXinchen Yue
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorWenqi Guo
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorXiong Liu
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorQinglei Yu
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorXiaoxian Lu
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
Search for more papers by this authorCorresponding Author
Prof. Chengjian Zhang
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Xinghong Zhang
State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
The incorporation of selenium (Se) atoms into polymers has garnered significant interest. However, methods to introduce selenium atoms into polymers remain limited, particularly for approaches that directly utilize elemental selenium. This work presents a novel copolymerization of gaseous carbon monoxide (CO), solid Se powder, and liquid oxetane (OX) to synthesize Se-containing polymers with tunable structure, using commercially available alkyl borane and organic bases as the binary metal-free catalyst system. The polymerization process includes two steps: the reduction of CO and Se to form COSe and alternating copolymerization of COSe with OX. The O/Se exchange reaction (O/Se ER) was discovered during the polymerization, which can alter the polymer structure. The O/Se ER could be significantly suppressed by the binary organocatalyst system at 60 °C, affording well-defined poly(selenocarbonate) in a fast and selective manner. The poly(selenocarbonate) is semi-crystalline exhibiting a melting temperature of 116 °C, a number-average molecular weight of 39 kDa, a tensile strength of 5.0 ± 0.4 MPa, and an elongation of 5.5 ± 0.5%. Interestingly, the poly(selenocarbonate) could be completely converted into the poly(selenoether) by utilizing the O/Se ER, i.e., decarboxylation in the presence of organic bases at high temperatures. This work provides an efficient synthetic method for synthesizing Se-containing polymers from readily available monomers.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202504180-sup-0001-SuppMat.docx35.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Chuai, S.-Q. Zhang, H. Bai, J. Li, Y. Wang, J. Sun, E. Wen, J. Zhang, M. Xin, Eur. J. Med. Chem. 2021, 223, 113621.
- 2M. Cao, P. Zhao, C. Liu, J. Xia, H. Xu, Macromol. Rapid Commun. 2022, 43, 2200083.
- 3Q. Li, J. Zhang, X. Pan, Z. Zhang, J. Zhu, X. Zhu, Polymers 2018, 10, 417.
- 4L. Yu, F. Chen, Y. Ding, ChemCatChem 2016, 8, 1033–1037.
- 5L. Sancineto, C. Tidei, L. Bagnoli, F. Marini, E. J. Lenardão, C. Santi, Molecules 2015, 20, 10496–10510.
- 6J. Luo, Z. Zhu, Y. Liu, X. Zhao, Org. Lett. 2015, 17, 3620–3623.
- 7R. Guo, J. Huang, H. Huang, X. Zhao, Org. Lett. 2016, 18, 504–507.
- 8D. M. Freudendahl, S. Santoro, S. A. Shahzad, C. Santi, T. Wirth, Angew. Chem. Int. Ed. 2009, 48, 8409–8411.
- 9R. Jain, D. Dominic, N. Jordan, E. R. Rene, S. Weiss, E. D. van Hullebusch, R. Hübner, P. N. L. Lens, Environ. Chem. Lett. 2016, 14, 381–386.
- 10Y. Bai, F. Rong, H. Wang, Y. Zhou, X. Xie, J. Teng, J. Chem. Eng. Data 2011, 56, 2563–2568.
- 11R. M. LoPachin, D. S. Barber, T. Gavin, Toxicol. Sci. 2008, 104, 235–249.
- 12R. G. Pearson, Coord. Chem. Rev. 1990, 100, 403–425.
- 13S. Ji, W. Cao, Y. Yu, H. Xu, Angew. Chem. Int. Ed. 2014, 53, 6781–6785.
- 14S. Chen, W. Lu, J. Zhang, H. He, Y. Cang, X. Pan, J. Zhu, ACS Macro Lett. 2022, 11, 264–269.
- 15F. Fan, S. Ji, C. Sun, C. Liu, Y. Yu, Y. Fu, H. Xu, Angew. Chem. Int. Ed. 2018, 57, 16426–16430.
- 16Y. Dai, K. Zheng, Y. Tan, W. Xiang, B. Xianyu, H. Xu, Adv. Sustain. Syst. 2020, 4, 2000072.
- 17R. Jain, D. Dominic, N. Jordan, E. R. Rene, S. Weiss, E. D. van Hullebusch, R. Hübner, P. N. L. Lens, Chem. Eng. J. 2016, 284, 917–925.
- 18Q. Gao, L.-H. Xiong, T. Han, Z. Qiu, X. He, H. H. Y. Sung, R. T. K. Kwok, I. D. Williams, J. W. Y. Lam, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 14712–14719.
- 19N.-H. You, N. Fukuzaki, Y. Suzuki, Y. Nakamura, T. Higashihara, S. Ando, M. Ueda, J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 4428–4434.
- 20M. Zhu, G. Niu, J. Tang, J. Mater. Chem. C 2019, 7, 2199–2206.
- 21T. Li, H. Xu, C. Rep, Phys. Sci. 2020, 1, 100111.
- 22H. Ren, Y. Wu, N. Ma, H. Xu, X. Zhang, Soft Matter 2012, 8, 1460–1466.
- 23N. Ma, Y. Li, H. Ren, H. Xu, Z. Li, X. Zhang, Polym. Chem. 2010, 1, 1609.
- 24X. Pan, F. Driessen, X. Zhu, F. E. Du Prez, ACS Macro Lett.2017, 6, 89–92.
- 25Y. Dai, Z. Zhang, M. Daniels, Y. Bao, J. Guan, S. Zhang, R. Zhou, Y. Tan, L. Liu, H. Xiao, S. Cui, H. Xu, Chem 2023, 9, 2006–2015.
- 26G. Wu, H. Zhou, J. Zhang, Z.-Y. Tian, X. Liu, S. Wang, C. W. Coley, H. Lu, Nat. Synth. 2023, 2, 515–526.
- 27B. T. Tuten, F. R. Bloesser, D. L. Marshall, L. Michalek, C. W. Schmitt, S. J. Blanksby, C. Barner-Kowollik, ACS Macro Lett. 2018, 7, 898–903.
- 28L. Yu, Y. Yang, F.-S. Du, Z.-C. Li, Biomacromolecules 2018, 19, 2182–2193.
- 29C.-J. Zhang, X.-H. Cao, X.-H. Zhang, Macromolecules 2020, 53, 203–211.
- 30J. Wu, C. Ding, D. Xing, Z. Zhang, X. Huang, X. Zhu, X. Pan, J. Zhu, Polym. Chem 2019, 10, 3851–3858.
- 31C. Wei, Y. Zhang, Z. Song, Y. Xia, H. Xu, M. Lang, Biomater. Sci. 2017, 5, 669–677.
- 32C. Wei, Y. Zhang, H. Xu, Y. Xu, Y. Xu, M. Lang, J. Mater Chem. B 2016, 4, 5059–5067.
- 33J. Liu, X. Ma, Y. Tong, M. Lang, Appl. Surf. Sci. 2019, 467–468, 477–485.
- 34C. Wei, Y. Zhang, B. Yan, Z. Du, M. Lang, Chem. Eur. J. 2018, 24, 789–792.
- 35Y. Li, M. Vergaelen, X. Pan, F. E. Du Prez, R. Hoogenboom, K. De Clerck, Macromolecules 2018, 51, 6149–6156.
- 36C. Wang, X. An, M. Pang, Z. Zhang, X. Zhu, J. Zhu, F. E. D. Prez, X. Pan, Polym. Chem. 2018, 9, 4044–4051.
- 37T. S. Kwon, S. Kondo, K. Takagi, H. Kunisada, Y. Yuki, Polym. J. 1999, 31, 483–487.
- 38T. Ando, T. S. Kwon, A. Kitagawa, T. Tanemura, S. Kondo, H. Kunisada, Y. Yuki, Macromol. Chem. Phys. 1996, 197, 2803–2810.
- 39C. Wei, Y. Xu, B. Yan, J. Hou, Z. Du, M. Lang, ACS Macro Lett. 2018, 7, 336–340.
- 40C. He, C. Liu, S. Pan, Y. Tan, J. Guan, H. Xu, Angew. Chem. Int. Ed. 2024, 63, e202317558.
- 41M. Milen, T. Szabó, Chem. Heterocycl. Comp. 2019, 55, 936–938.
- 42H. S. Karmakar, C. Kumar, N. R. Kumar, S. Das, A. R. Agrawal, N. G. Ghosh, S. S. Zade, J. Org. Chem. 2021, 86, 12494–12506.
- 43X. Wu, J. He, R. Hu, B. Z. Tang, J. Am. Chem. Soc. 2021, 143, 15723–15731.
- 44X. Wu, H. Lin, F. Dai, R. Hu, B. Z. Tang, CCS Chem. 2020, 2, 191–202.
- 45X. Yue, X. Lu, C. Zhang, X. Zhang, CCS Chem. 2024, 7, 1326–1334.
- 46Z. Liu, Y. Xia, W. Guo, C. Zhang, X. Zhang, Macromol. Chem. Phys. 2024, 225, 2300449.
- 47S. Fujimori, S. Inoue, J. Am. Chem. Soc. 2022, 144, 2034–2050.
- 48D. J. Jacob, Atmos. Environ. 2000, 34, 2131–2159.
- 49Z. Xiao, L. Zhong, C. Du, W. Du, H. Zheng, C. S. Cheung, L. Wang, H. Gao, Macromolecules 2021, 54, 687–695.
- 50H.-L. Wu, J.-L. Yang, M. Luo, R.-Y. Wang, J.-T. Xu, B.-Y. Du, X.-H. Zhang, D. J. Darensbourg, Macromolecules 2016, 49, 8863–8868.
- 51M. Luo, X.-H. Zhang, D. J. Darensbourg, Macromolecules 2015, 48, 5526–5532.
- 52M. Luo, X.-H. Zhang, B.-Y. Du, Q. Wang, Z.-Q. Fan, Macromolecules 2013, 46, 5899–5904.
- 53M. Luo, X.-H. Zhang, D. J. Darensbourg, Acc. Chem. Res. 2016, 49, 2209–2219.
- 54H.-L. Wu, J.-L. Yang, M. Luo, R.-Y. Wang, J.-T. Xu, B.-Y. Du, X.-H. Zhang, D. J. Darensbourg, Macromolecules 2016, 49, 8863–88681.
- 55G. A. Bhat, M. Luo, D. J. Darensbourg, Green Chem. 2020, 22, 7707–7724.
- 56S. Ji, W. Cao, Y. Yu, H. Xu, Adv. Mater. 2015, 27, 7740–7745.
- 57B. Bai, S. Qi, K. Yang, X. Yu, R. Jian, T. Zhang, D. Wang, H. Meng, Y. Zhao, Y. Xia, H. Xu, G. Yu, Z. Chen, Small 2023, 19, 2300217.
- 58B. Xianyu, S. Pan, S. Gao, H. Xu, T. Li, Small 2024, 20, 2306225.
- 59M. Prince, B. Bremer, J. Polym. Sci. Part B 1967, 5, 843–845.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.