Emerging Porous Conductive Ion-Selective Membranes for Sustainable Energy Devices
Dr. Liheng Dai
Department State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Kang Huang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Fang Xu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
These authors contributed equally to this work.
Search for more papers by this authorShuhao Lin
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Zhi Xu
Department State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 China
E-mail: [email protected]
Search for more papers by this authorDr. Liheng Dai
Department State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorProf. Kang Huang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Fang Xu
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
These authors contributed equally to this work.
Search for more papers by this authorShuhao Lin
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816 China
Suzhou Laboratory, No. 388 Ruoshui Road, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Zhi Xu
Department State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Porous conductive ion-selective membranes (PCIMs), as key components of sustainable energy devices, have attracted widespread research interest owing to their unique pore structures and properties for achieving low-resistance high-ion-selectivity transport. However, the fabrication of high-efficiency PCIMs remains challenging, and the intricate relationship between the structural properties of PCIMs and its pivotal influence on the performance of energy devices is not well explored. This review focuses on emerging PCIMs with sub-nano/nanometer pores, particularly their design strategies, and fabrication processes. First, the theorical mechanisms underlying ion transfer in confined pores is comprehensively discussed. Subsequently, the effect of a series of pore characteristics—including size, charge, geometry, orientation, and durability on ion-selective transport and their regulation strategies are discussed and summarized. Then, effective and universally known methods for designing and adjusting PCIMs containing intrinsic pores, induced pores, and composite pores are highlighted. Furthermore, the progresses of PCIM applications in emerging electrochemical energy devices including fuel cells, flow batteries, Li-ion batteries, and concentration batteries are summarized. Overall, this review aims to provide a valuable reference for scholars and researchers dedicated to the study of PCIMs, thereby contributing to the ongoing progress in this field.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in Supporting Information of this article.
Supporting Information
Filename | Description |
---|---|
ange202504134-sup-0001-SuppMat.docx207.5 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Lei, Z. Wang, D. Wang, X. Zhang, H. Che, X. Yue, C. Tian, J. Zhong, L. Guo, L. Li, H. Zhou, L. Liu, Y. Xu, Nat. Clim. Change 2023, 13, 693–700.
- 2K. Ahmed, J. Cleaner Prod. 2023, 390, 136202.
- 3F. Rahman, S. Rehman, M. A. Abdul-Majeed, Renew. Sustain. Energy Rev. 2012, 16, 274–283.
- 4W. Song, X. Zhang, C. Yang, Z. Yang, L. Wu, X. Ge, T. Xu, ACS Cent. Sci. 2023, 9, 1538–1557.
- 5W. Song, K. Peng, W. Xu, X. Liu, H. Zhang, X. Liang, B. Ye, H. Zhang, Z. Yang, L. Wu, X. Ge, T. Xu, Nat. Commun. 2023, 14, 2732.
- 6E. Abouzari-lotf, H. Ghassemi, M. M. Nasef, A. Ahmad, M. Zakeri, T. M. Ting, A. Abbasi, S. Mehdipour-Ataei, J. Mater. Chem. A 2017, 5, 15326–15341.
- 7Y. Guo, Z. Jiang, X. Wang, W. Ying, D. Chen, S. Liu, S. Chen, Z.-J. Jiang, X. Peng, J. Mater. Chem. A 2018, 6, 19547–19554.
- 8T. Zhu, C. Tang, Polym. Chem. 2020, 11, 4542–4546.
- 9M. A. Yandrasits, M. J. Lindell, S. J. Hamrock, Curr. Opin. Electrochem. 2019, 18, 90–98.
- 10L. Dai, K. Huang, Y. Xia, Z. Xu, Green Energy Environ. 2021, 6, 193–211.
- 11C. Ye, A. Wang, C. Breakwell, R. Tan, C. Grazia Bezzu, E. Hunter-Sellars, D. R. Williams, N. P. Brandon, P. A. A. Klusener, A. R. Kucernak, K. E. Jelfs, N. B. McKeown, Q. Song, Nat. Commun. 2022, 13, 3184.
- 12A. Fetyan, B. P. Benetho, M. O. Bamgbopa, J. Energy Chem. 2023, 81, 64–70.
- 13Y. Xia, H. Cao, F. Xu, Y. Chen, Y. Xia, D. Zhang, L. Dai, K. Qu, C. Lian, K. Huang, W. Xing, W. Jin, Z. Xu, Nat. Sustain. 2022, 5, 1080–1091.
- 14Q. Dai, Z. Liu, L. Huang, C. Wang, Y. Zhao, Q. Fu, A. Zheng, H. Zhang, X. Li, Nat. Commun. 2020, 11, 13.
- 15T. Ji, C. Zhang, X. Xiao, Y. Wang, D. Cao, A. Adomkevicius, Y. Zhao, X. Sun, K. Fu, H. Zhu, Small 2023, 19, 2206807.
- 16M. Shi, Q. Dai, F. Li, T. Li, G. Hou, H. Zhang, X. Li, Adv. Energy Mater. 2020, 10, 2001382.
- 17Y. Zhao, H. Zhang, C. Xiao, L. Qiao, Q. Fu, X. Li, Nano Energy 2018, 48, 353–360.
- 18W. Lu, D. Shi, H. Zhang, X. Li, Energy Storage Mater. 2019, 17, 325–333.
- 19G. Bian, N. Pan, Z. Luan, X. Sui, W. Fan, Y. Xia, K. Sui, L. Jiang, Angew. Chem. Int. Ed. 2021, 60, 20294–20300.
- 20X. Li, P. Zuo, X. Ge, Z. Yang, T. Xu, Natl. Sci. Rev. 2025, 12, nwae439.
- 21W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, X. Li, Chem. Soc. Rev. 2017, 46, 2199–2236.
- 22W. Lu, L. Qiao, Q. Dai, H. Zhang, X. Li, J. Mater. Chem. A 2018, 6, 15569–15576.
- 23L. Qiao, H. Zhang, W. Lu, C. Xiao, Q. Fu, X. Li, I. F. J. Vankelecom, Nano Energy 2018, 54, 73–81.
- 24M. A. Rasool, P. P. Pescarmona, I. F. J. Vankelecom, ACS Sustain. Chem. Eng. 2019, 7, 13774–13785.
- 25F. Russo, M. Tiecco, F. Galiano, R. Mancuso, B. Gabriele, A. Figoli, J. Membr. Sci. 2022, 649, 120387.
- 26W. Zhang, L. Chen, S. Dai, C. Zhao, C. Ma, L. Wei, M. Zhu, S. Y. Chong, H. Yang, L. Liu, Y. Bai, M. Yu, Y. Xu, X.-W. Zhu, Q. Zhu, S. An, R. S. Sprick, M. A. Little, X. Wu, S. Jiang, Y. Wu, Y.-B. Zhang, H. Tian, W.-H. Zhu, A. I. Cooper, Nature 2022, 604, 72–79.
- 27H. Dou, M. Xu, B. Wang, Z. Zhang, G. Wen, Y. Zheng, D. Luo, L. Zhao, A. Yu, L. Zhang, Z. Jiang, Z. Chen, Chem. Soc. Rev. 2021, 50, 986–1029.
- 28H. Daiguji, Chem. Soc. Rev. 2010, 39, 901–911.
- 29M. E. Suk, N. R. Aluru, J. Chem. Phys. 2014, 140, 084707.
- 30R. C. Rollings, A. T. Kuan, J. A. Golovchenko, Nat. Commun. 2016, 7, 11408.
- 31L. Wang, M. S. H. Boutilier, P. R. Kidambi, D. Jang, N. G. Hadjiconstantinou, R. Karnik, Nat. Nanotechnol. 2017, 12, 509–522.
- 32X. Chen, Y. Qin, Y. Zhu, X. Pan, Y. Wang, H. Ma, R. Wang, C. D. Easton, Y. Chen, C. Tang, A. Du, A. Huang, Z. Xie, X. Zhang, G. P. Simon, M. M. Banaszak Holl, X. Lu, K. Novoselov, H. Wang, Sci. Adv., 10, eadl1455.
- 33Y. Guo, Z. Jiang, W. Ying, L. Chen, Y. Liu, X. Wang, Z.-J. Jiang, B. Chen, X. Peng, Adv. Mater. 2018, 30, 1705155.
- 34H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou, L. Jiang, J. Z. Liu, B. D. Freeman, A. J. Hill, H. Wang, Sci. Adv. 2018, 4, eaaq0066.
- 35L. A. Richards, A. I. Schäfer, B. S. Richards, B. Corry, Small 2012, 8, 1701–1709.
- 36L. A. Richards, A. I. Schäfer, B. S. Richards, B. Corry, Phys. Chem. Chem. Phys. 2012, 14, 11633–11638.
- 37S. Sahu, M. Di Ventra, M. Zwolak, Nano Lett. 2017, 17, 4719–4724.
- 38S. Sahu, M. Zwolak, Nanoscale 2017, 9, 11424–11428.
- 39A. Esfandiar, B. Radha, F. C. Wang, Q. Yang, S. Hu, S. Garaj, R. R. Nair, A. K. Geim, K. Gopinadhan, Science 2017, 358, 511–513.
- 40X. Zhou, Z. Wang, R. Epsztein, C. Zhan, W. Li, J. D. Fortner, T. A. Pham, J.-H. Kim, M. Elimelech, Sci. Adv. 2020, 6, eabd9045.
- 41S. B. Sigurdardottir, R. M. DuChanois, R. Epsztein, M. Pinelo, M. Elimelech, J. Membr. Sci. 2020, 603, 117921.
- 42B. Corry, J. Phys. Chem. B 2008, 112, 1427–1434.
- 43R. Epsztein, E. Shaulsky, M. Qin, M. Elimelech, J. Membr. Sci. 2019, 580, 316–326.
- 44S. Hong, C. Constans, M. V. Surmani Martins, Y. C. Seow, J. A. Guevara Carrió, S. Garaj, Nano Lett. 2017, 17, 728–732.
- 45J. Abraham, K. S. Vasu, C. D. Williams, K. Gopinadhan, Y. Su, C. T. Cherian, J. Dix, E. Prestat, S. J. Haigh, I. V. Grigorieva, P. Carbone, A. K. Geim, R. R. Nair, Nat. Nanotechnol. 2017, 12, 546–550.
- 46S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J. A. Golovchenko, Nature 2010, 467, 190–193.
- 47K. Gopinadhan, S. Hu, A. Esfandiar, M. Lozada-Hidalgo, F. C. Wang, Q. Yang, A. V. Tyurnina, A. Keerthi, B. Radha, A. K. Geim, Science 2019, 363, 145–148.
- 48E. Gouaux, R. MacKinnon, Science 2005, 310, 1461–1465.
- 49F. Xu, M. Wei, X. Zhang, Y. Wang, ACS Appl. Mater. Inter. 2019, 11, 45246–45255.
- 50F. Xu, L. Dai, Y. Wu, Z. Xu, J. Membr. Sci. 2021, 636, 119542.
- 51Y. Kang, Z. Zhang, H. Shi, J. Zhang, L. Liang, Q. Wang, H. Ågren, Y. Tu, Nanoscale 2014, 6, 10666–10672.
- 52K. Sint, B. Wang, P. Král, J. Am. Chem. Soc. 2008, 130, 16448–16449.
- 53W. Jiang, J. Zhou, X. Zhong, M. Fang, J. Hao, D. Zhao, X. Wen, H. Wang, Y. Zhou, Y. Zhu, L. Jiang, Nat. Sustain. 2025, 8, 446–455.
- 54C. L. Ritt, M. Liu, T. A. Pham, R. Epsztein, H. J. Kulik, M. Elimelech, Sci. Adv. 2022, 8, eabl5771.
- 55H. Zhang, J. Xing, G. Wei, X. Wang, S. Chen, X. Quan, Nat. Commun. 2024, 15, 4324.
- 56H. Eyring, J. Chem. Phys. 1936, 4, 283–291.
- 57B. J. Zwolinski, H. Eyring, C. E. Reese, J. Physic. Coll. Chem. 1949, 53, 1426–1453.
- 58R. Epsztein, R. M. DuChanois, C. L. Ritt, A. Noy, M. Elimelech, Nat. Nanotechnol. 2020, 15, 426–436.
- 59H. Eyring, Trans. Faraday Soc. 1938, 34, 41–48.
- 60I. V. Bodrenko, S. Salis, S. Acosta-Gutierrez, M. Ceccarelli, J. Chem. Phys. 2019, 150, 211102.
- 61W. J. Koros, C. Zhang, Nat. Mater. 2017, 16, 289–297.
- 62L. Shi, A. Xu, D. Pan, T. Zhao, Nat. Commun. 2019, 10, 1165.
- 63P. Choi, N. H. Jalani, R. Datta, J. Electrochem. Soc. 2005, 152, E123.
- 64F. Xu, Y. Wang, C. Lian, Z. Xu, J. Membr. Sci. 2022, 648, 120361.
- 65D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, K. Fraser, Phys. Chem. Chem. Phys. 2009, 11, 4962–4967.
- 66J. Sangoro, A. Serghei, S. Naumov, P. Galvosas, J. Kärger, C. Wespe, F. Bordusa, F. Kremer, Physic. Rev. E Stat. Nonlinear Soft Matt. Phy. 2008, 77, 051202.
- 67A. Fang, K. Kroenlein, D. Riccardi, A. Smolyanitsky, Nat. Mater. 2019, 18, 76–81.
- 68T. Wong, Y. Yang, R. Tan, A. Wang, Z. Zhou, Z. Yuan, J. Li, D. Liu, A. Alvarez-Fernandez, C. Ye, M. Sankey, D. Ainsworth, S. Guldin, F. Foglia, N. B. McKeown, K. E. Jelfs, X. Li, Q. Song, Joule 2024, 9, 101795.
10.1016/j.joule.2024.11.012 Google Scholar
- 69J. Yuan, X. Shi, Q. Qiu, P. Yao, Y. Xia, Y. Zhao, Y. Li, ACS Appl. Energy Mater. 2023, 6, 416–423.
- 70R. Singh, D. Kim, Nano Energy 2022, 92, 106690.
- 71Z. Sun, Y. Kuang, M. Ahmad, Y. Huang, S. Yin, F. Seidi, S. Wang, Carbohydr. Polym. 2023, 305, 120556.
- 72R. Tan, H. He, A. Wang, T. Wong, Y. Yang, S. Iguodala, C. Ye, D. Liu, Z. Fan, M. Furedi, G. He, S. Guldin, D. J. L. Brett, N. B. McKeown, Q. Song, Angew. Chem. Int. Ed. 2024, 63, e202409322.
- 73Z. Xu, I. Michos, Z. Cao, W. Jing, X. Gu, K. Hinkle, S. Murad, J. Dong, J. Phys. Chem. C 2016, 120, 26386–26392.
- 74K. Huang, S. Lin, Y. Xia, Y. Xia, F. Mu, Y. Lu, H. Cao, Y. Wang, W. Xing, Z. Xu, Engineering 2023, 28, 69–78.
- 75N. Chang, Y. Yin, M. Yue, Z. Yuan, H. Zhang, Q. Lai, X. Li, Adv. Funct. Mater. 2019, 29, 1901674.
- 76P. Zuo, C. Ye, Z. Jiao, J. Luo, J. Fang, U. S. Schubert, N. B. McKeown, T. L. Liu, Z. Yang, T. Xu, Nature 2023, 617, 299–305.
- 77H. Tang, K. Geng, L. Wu, J. Liu, Z. Chen, W. You, F. Yan, M. D. Guiver, N. Li, Nat. Energy 2022, 7, 153–162.
- 78C. Yang, L. Hou, Z. Yao, J. Zhao, L. a. Hou, L. Zhang, J. Membr. Sci. 2021, 640, 119800.
- 79R. Wang, M. Wei, Y. Wang, J. Membr. Sci. 2020, 604, 118090.
- 80L. Xin, D. Zhang, K. Qu, Y. Lu, Y. Wang, K. Huang, Z. Wang, W. Jin, Z. Xu, Adv. Funct. Mater. 2021, 31, 2104629.
- 81A. Wang, R. Tan, C. Breakwell, X. Wei, Z. Fan, C. Ye, R. Malpass-Evans, T. Liu, M. A. Zwijnenburg, K. E. Jelfs, N. B. McKeown, J. Chen, Q. Song, J. Am. Chem. Soc. 2022, 144, 17198–17208.
- 82X. Han, W. Xu, F. Meng, Z. Liu, C. Liao, J. Mater. Chem. A 2025, 13, 10358–10387.
- 83L. Zhai, S. Chai, T. Li, H. Li, S. He, H. He, X. Li, L. Wu, F. Jiang, H. Li, Nano Lett. 2023, 23, 10414–10422.
- 84J. Mu, M. Yu, H. Jiang, X. Li, F. Chu, Q. Hou, G. He, ACS Mater. Lett. 2023, 5, 133–143.
- 85N. Chen, Y. Jin, H. Liu, C. Hu, B. Wu, S. Xu, H. Li, J. Fan, Y. M. Lee, Angew. Chem. Int. Ed. 2021, 60, 19272–19280.
- 86Z. Zhou, D. B. Shinde, D. Guo, L. Cao, R. A. Nuaimi, Y. Zhang, L. R. Enakonda, Z. Lai, Adv. Funct. Mater. 2022, 32, 2108672.
- 87Q. Dai, F. Xing, X. Liu, D. Shi, C. Deng, Z. Zhao, X. Li, Energy Environ. Sci. 2022, 15, 1594–1600.
- 88C. Cheng, G. Jiang, G. P. Simon, J. Z. Liu, D. Li, Nat. Nanotechnol. 2018, 13, 685–690.
- 89X. You, L. Cao, Y. Liu, H. Wu, R. Li, Q. Xiao, J. Yuan, R. Zhang, C. Fan, X. Wang, P. Yang, X. Yang, Y. Ma, Z. Jiang, ACS Nano 2022, 16, 11781–11791.
- 90S. Liu, X. Tong, L. Huang, R. Hao, H. Gao, Y. Chen, J. Crittenden, Environ. Sci. Technol. 2020, 54, 5802–5812.
- 91L. Cao, H. Wu, Y. Cao, C. Fan, R. Zhao, X. He, P. Yang, B. Shi, X. You, Z. Jiang, Adv. Mater. 2020, 32, 2005565.
- 92X. He, Y. Yang, H. Wu, G. He, Z. Xu, Y. Kong, L. Cao, B. Shi, Z. Zhang, C. Tongsh, K. Jiao, K. Zhu, Z. Jiang, Adv. Mater. 2020, 32, 2001284.
- 93C. Zhu, W. Xian, Y. Song, X. Zuo, Y. Wang, S. Ma, Q. Sun, Adv. Funct. Mater. 2022, 32, 2109210.
- 94A. R. Fauziah, C.-W. Chu, L.-H. Yeh, Chem. Eng. J. 2023, 452, 139244.
- 95B. Yao, S. Hussain, Z. Ye, X. Peng, Small 2023, 19, 2207559.
- 96K. Peng, C. Zhang, J. Fang, H. Cai, R. Ling, Y. Ma, G. Tang, P. Zuo, Z. Yang, T. Xu, Angew. Chem. Int. Ed. 2024, 63, e202407372.
- 97J. Zhou, Y. Liu, P. Zuo, Y. Li, Y. Dong, L. Wu, Z. Yang, T. Xu, J. Membr. Sci. 2021, 620, 118832.
- 98W. Chen, T. Dong, Y. Xiang, Y. Qian, X. Zhao, W. Xin, X.-Y. Kong, L. Jiang, L. Wen, Adv. Mater. 2022, 34, 2108410.
- 99S. Yoon, E. Lee, S. J. Yoon, D. M. Yu, Y. J. Kim, Y. T. Hong, S. So, ACS Appl. Energy Mater. 2021, 4, 4473–4481.
- 100L. Li, M. Wang, J. Wang, F. Ye, S. Wang, Y. Xu, J. Liu, G. Xu, Y. Zhang, Y. Zhang, C. Yan, N. V. Medhekar, M. Liu, Y. Zhang, J. Mater. Chem. A 2020, 8, 8033–8040.
- 101B. Pang, Z. Fan, W. Chen, X. Yan, R. Du, X. Wang, X. Wu, F. Cui, M. Guo, G. He, J. Mater. Chem. A 2022, 10, 24510–24518.
- 102H. Wang, Y. Zhai, Y. Li, Y. Cao, B. Shi, R. Li, Z. Zhu, H. Jiang, Z. Guo, M. Wang, L. Chen, Y. Liu, K.-G. Zhou, F. Pan, Z. Jiang, Nat. Commun. 2022, 13, 7123.
- 103J. Lu, H. Xu, H. Yu, X. Hu, J. Xia, Y. Zhu, F. Wang, H.-A. Wu, L. Jiang, H. Wang, Sci. Adv. 2022, 8, eabl5070.
- 104C. Li, L. Wen, X. Sui, Y. Cheng, L. Gao, L. Jiang, Sci. Adv. 2021, 7, eabg2183.
- 105J. Hu, C. Yuan, L. Zhi, H. Zhang, Z. Yuan, X. Li, Adv. Funct. Mater. 2021, 31, 2102167.
- 106R. Qu, X. Zeng, L. Lin, G. Zhang, F. Liu, C. Wang, S. Ma, C. Liu, H. Miao, L. Cao, ACS Nano 2020, 14, 16654–16662.
- 107Q. Sun, Z. Song, J. Du, A. Yao, L. Liu, W. He, S. U. Hassan, J. Guan, J. Liu, ACS Nano 2024, 18, 27065–27076.
- 108L. Li, R. Bu, W. Zhong, Q. Wu, F. Wang, Z. Shen, S. Mao, J. Zhang, C. Tan, S. Zhang, B. Zhang, H. Gao, Y. Kim, Y. Lu, H. Cheng, Nano Energy 2025, 138, 110886.
- 109R. Wei, X. Liu, L. Cao, C. Chen, I. C. Chen, Z. Li, J. Miao, Z. Lai, Nat. Commun. 2024, 15, 10489.
- 110C. Chen, L. Meng, L. Cao, D. Zhang, S. An, L. Liu, J. Wang, G. Li, T. Pan, J. Shen, Z. Chen, Z. Shi, Z. Lai, Y. Han, J. Am. Chem. Soc. 2024, 146, 11855–11865.
- 111X. Jiang, Q. Zhang, N. Zhao, Z. Li, L. Jiang, Z. Zhang, Adv. Mater. 2025, n/a, 2416093.
- 112W. Lin, L. Cao, X. Liu, L. O. Alimi, J. Wang, B. A. Moosa, Z. Lai, N. M. Khashab, J. Am. Chem. Soc. 2024, 146, 34528–34535.
- 113D. Lei, Y. Wang, Q. Zhang, S. Wang, L. Jiang, Z. Zhang, Nat. Commun. 2025, 16, 754.
- 114Y. Wu, Y. Wang, D. Zhang, F. Xu, L. Dai, K. Qu, H. Cao, Y. Xia, S. Li, K. Huang, Z. Xu, Angew. Chem. Int. Ed. 2023, 62, e202313571.
- 115D. Zhang, K. Huang, Y. Xia, H. Cao, L. Dai, K. Qu, L. Xiao, Y. Fan, Z. Xu, Angew. Chem. Int. Ed. 2023, 62, e202310945.
- 116B. Pang, R. Du, W. Chen, F. Cui, N. Wang, H. Zhao, G. Xie, L. Tiantian, G. He, X. Wu, Energy Storage Mater. 2024, 67, 103293.
- 117Z.-H. Luo, M. Zheng, M.-X. Zhou, X.-T. Sheng, X.-L. Chen, J.-J. Shao, T.-S. Wang, G. Zhou, Adv. Mater. 2025, 37, 2417321.
- 118D. Zhang, S. Fan, K. Xu, H. Liu, N. Chang, Y. Wang, Y. Wang, K. Huang, Z. Xu, Ind. Eng. Chem. Res. 2024, 63, 13282–13290.
- 119H. Cao, Y. Xia, Y. Lu, Y. Wu, Y. Xia, X. Hou, Y. Wang, G. Liu, K. Huang, Z. Xu, AIChE J. 2022, 68, e17657.
- 120X. Liu, K. Xu, J. Ding, T. Chen, X. Hou, H. Cao, Y. Xia, Y. Lu, Y. Wang, S. Fan, K. Huang, Z. Xu, AIChE J. 2025, n/a, e18728.
- 121R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E. W. Zhao, T. Liu, C. Ye, X. Zhou, B. P. Darwich, Z. Fan, L. Turcani, E. Jackson, L. Chen, S. Y. Chong, T. Li, K. E. Jelfs, A. I. Cooper, N. P. Brandon, C. P. Grey, N. B. McKeown, Q. Song, Nat. Mater. 2020, 19, 195–202.
- 122P. Zuo, Y. Li, A. Wang, R. Tan, Y. Liu, X. Liang, F. Sheng, G. Tang, L. Ge, L. Wu, Q. Song, N. B. McKeown, Z. Yang, T. Xu, Angew. Chem. Int. Ed. 2020, 59, 9564–9573.
- 123W. Xu, J. Xu, Z. Yi, J. Ding, S. Li, Y. Wang, Z. Xu, Chem. Eng. Sci. 2024, 299, 120468.
- 124K. Geng, H. Tang, Q. Ju, H. Qian, N. Li, J. Membr. Sci. 2021, 620, 118981.
- 125L. Ding, Y. Wang, L. Wang, X. Han, J. Membr. Sci. 2022, 642, 119934.
- 126Q. Cheng, Z. Sheng, M. Li, W. Ye, S. Peng, G. Zeng, Q. He, Adv. Energy Mater. 2025, n/a, 2405436.
- 127H. Zhao, N. Deng, G. Wang, H. Ren, W. Kang, B. Cheng, Chem. Eng. J. 2021, 404, 126542.
- 128Y. Zhang, X. Zhang, P. Li, W. Wu, J. Lin, J. Wang, L. Qu, H. Zhang, J. Mater. Chem. A 2020, 8, 5128–5137.
- 129Y. Hu, Y. Teng, Y. Sun, P. Liu, L. Fu, L. Yang, X.-Y. Kong, Q. Zhao, L. Jiang, L. Wen, Nano Energy 2022, 97, 107170.
- 130S. Peng, L. Zhang, C. Zhang, Y. Ding, X. Guo, G. He, G. Yu, Adv. Energy Mater. 2018, 8, 1802533.
- 131J. Ye, X. Zhao, Y. Ma, J. Su, C. Xiang, K. Zhao, M. Ding, C. Jia, L. Sun, Adv. Energy Mater. 2020, 10, 1904041.
- 132Q. Dai, W. Lu, Y. Zhao, H. Zhang, X. Zhu, X. Li, J. Membr. Sci. 2020, 595, 117569.
- 133X. Hou, K. Huang, Y. Xia, F. Mu, H. Cao, Y. Xia, Y. Wu, Y. Lu, Y. Wang, F. Xu, Y. Yu, W. Xing, Z. Xu, AIChE J. 2022, 68, e17738.
- 134Y. Zhen, Z. Xu, Q. Cao, M. Pang, Q. Xu, D. Lin, J. Liu, B. Wang, Angew. Chem. Int. Ed. 2025, 64, e202413046.
- 135L. Hua, W. Lu, T. Li, P. Xu, H. Zhang, X. Li, Mater. Today Energy 2021, 21, 100763.
- 136A. Mahmood, Z. Zheng, Y. Chen, Adv. Sci. 2024, 11, 2305561.
- 137C. Ye, R. Tan, A. Wang, J. Chen, B. Comesaña Gándara, C. Breakwell, A. Alvarez-Fernandez, Z. Fan, J. Weng, C. G. Bezzu, S. Guldin, N. P. Brandon, A. R. Kucernak, K. E. Jelfs, N. B. McKeown, Q. Song, Angew. Chem. Int. Ed. 2022, 61, e202207580.
- 138A. Wang, C. Breakwell, F. Foglia, R. Tan, L. Lovell, X. Wei, T. Wong, N. Meng, H. Li, A. Seel, M. Sarter, K. Smith, A. Alvarez-Fernandez, M. Furedi, S. Guldin, M. M. Britton, N. B. McKeown, K. E. Jelfs, Q. Song, Nature 2024, 635, 353–358.
- 139Y. Xia, H. Cao, X. Hou, Y. Wu, J. Ding, Y. Wang, K. Huang, W. Xing, Z. Xu, Ind. Eng. Chem. Res. 2025, 64, 3473–3485.
- 140C. Fan, H. Wu, J. Guan, X. You, C. Yang, X. Wang, L. Cao, B. Shi, Q. Peng, Y. Kong, Y. Wu, N. A. Khan, Z. Jiang, Angew. Chem. Int. Ed. 2021, 60, 18051–18058.
- 141Y. Zheng, Y. Liu, H. Li, Z. Yang, W. Wu, J. Zhang, J. Wu, J. Wang, Adv. Funct. Mater. 2025, n/a, 2500151.
- 142Z. Gao, Z. Yin, Y. Kong, L. Zhang, N. Xing, S. Zhu, Z. Yao, Z. Liu, X. Pang, H. Wu, Z. Jiang, Chem. Eng. J. 2024, 490, 151368.
- 143X. Yang, Z. Feng, M. Alshurafa, M. Yu, A. B. Foster, H. Zhai, T. Yuan, Y. Xiao, C. D'Agostino, L. Ai, M. Perez-Page, K. Smith, F. Foglia, A. Lovett, T. S. Miller, J. Chen, P. M. Budd, S. M. Holmes, Adv. Mater. 2025, n/a, 2419534.
- 144C. Zhao, Z. Zhou, S. Liu, N. Li, Z. Hu, S. Chen, J. Membr. Sci. 2025, 724, 123980.
- 145C. M. Costa, Y.-H. Lee, J.-H. Kim, S.-Y. Lee, S. Lanceros-Méndez, Energy Storage Mater. 2019, 22, 346–375.
- 146X. Li, H. Jiang, Y. Liu, X. Guo, G. He, Z. Chu, G. Yu, EcoMat 2022, 4, e12162.
- 147C. Li, R. Liu, Y. Xiao, F. Cao, H. Zhang, Energy Storage Mater. 2021, 40, 439–460.
- 148J. Xu, S. An, X. Song, Y. Cao, N. Wang, X. Qiu, Y. Zhang, J. Chen, X. Duan, J. Huang, W. Li, Y. Wang, Adv. Mater. 2021, 33, 2105178.
- 149M. Li, Y. Wan, J.-K. Huang, A. H. Assen, C.-E. Hsiung, H. Jiang, Y. Han, M. Eddaoudi, Z. Lai, J. Ming, L.-J. Li, ACS Energy Lett. 2017, 2, 2362–2367.
- 150W. Zhang, X. Du, M. Zhang, K. Su, S. Li, Z. Li, J. Colloid Inter. Sci. 2024, 663, 735–748.
- 151Z. Zhang, L. Wen, L. Jiang, Nat. Rev. Mater. 2021, 6, 622–639.
- 152B. Mohan, K. Singh, R. K. Gupta, A. J. L. Pombeiro, P. Ren, Prog. Mater Sci. 2025, 152, 101457.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.