Ultrahigh-Voltage Lithium Metal Batteries Enabled by Single-Ion and Weakly-Solvating Nanometric Aggregates
Chenxi Xiao
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorPeng Wen
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorFeiyu Luo
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorDengxiang Yu
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorHuaijiao Wang
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorZhirong Zhou
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorWeiping Li
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorXinxing Zhang
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinrong Lin
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
E-mail: [email protected]
Search for more papers by this authorChenxi Xiao
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorPeng Wen
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorFeiyu Luo
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorDengxiang Yu
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorHuaijiao Wang
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorZhirong Zhou
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorWeiping Li
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
Search for more papers by this authorXinxing Zhang
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xinrong Lin
Division of Natural and Applied Sciences, Duke Kunshan University, Jiangsu, 215306 China
School of Chemical Science and Technology, Yunnan University, Kunming, 650091 China
E-mail: [email protected]
Search for more papers by this authorAbstract
The urgent need for high energy density (> 400 Wh kg−1) has driven advancements in lithium metal batteries (LMBs) with high-voltage cathodes. However, degradation of traditional electrolytes restricts high cut-off voltage < 4.4 V, while low lithium transference numbers (tLi+) lead to polarization and early charge/discharge termination, which typically necessitate use of multiple solvents or salt-concentrated electrolytes to enable high-voltage chemistry. To address this challenge, we developed a single-solvent, single-salt electrolyte with tris(2,2,2-trifluoroethyl)phosphate (TFEP), achieving a high tLi+ of 0.78 and enabling ultra-high-voltage LMB operation up to 5.0 V. Large molecular sterics and electron density delocalization of TFEP enabled dominant presence of local aggregates (AGGs), which further populated to form large and ion-rich weakly-solvating nanometric aggregates (n-AGGs), changing redox properties and promoting the interfacial stabilities to a greater extent. As a result, we showed suppressed dendrite formation with stable cycling for over 1500 h, and full-cell operations paired with LiNi0.8Mn0.1Co0.1O2 (NCM811) at 4.7 V and with LiNi0.5Mn1.5O4 (LNMO) at 5.0 V. The tuning of bulk electrolyte properties from the scale of microscopic electronic structures to mesoscopic solvation structures has effectively enhanced thermodynamic and kinetic stabilities of the electrolyte, paving the way for LMBs with high-voltage tolerance.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
ange202502465-sup-0001-SuppMat.docx29.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Armand, J. M. Tarascon, Nature 2008, 451, 652–657.
- 2M. Jiang, D. L. Danilov, R. A. Eichel, P. H. L. Notten, Adv. Energy. Mater. 2021, 11, 2103005.
- 3Z. Li, A. Li, H. Zhang, F. Ning, W. Li, A. Zangiabadi, Q. Cheng, J. J. Borovilas, Y. Chen, H. Zhang, X. Xiao, C. Ouyang, X. Huang, W.-K. Lee, M. Ge, Y. S. Chu, X. Chuan, Y. Yang, Energy Storage Mater. 2020, 29, 71–77.
- 4W. D. Li, B. H. Song, A. Manthiram, Chem. Soc. Rev. 2017, 46, 3006–3059.
- 5S.-M. Hao, J. Zhu, S. He, L. Ma, W. Liu, Y. Zhang, X. Xie, X. Qin, X. Fan, H. Li, L. Zhang, W. Zhou, Nat. Sustain. 2024, 7, 661–671.
- 6X. L. Fan, C. S. Wang, Chem. Soc. Rev. 2021, 50, 10486–10566.
- 7K. Qin, K. Holguin, M. Mohammadiroudbari, J. Huang, E. Y. S. Kim, R. Hall, C. Luo, Adv. Funct. Mater. 2021, 31, 2009694.
- 8J. Xie, Z. Liang, Y.-C. Lu, Nat. Mater. 2020, 19, 1006–1011.
- 9W. J. Xue, M. J. Huang, Y. T. Li, Y. G. Zhu, R. Gao, X. H. Xiao, W. X. Zhang, S. P. Li, G. Y. Xu, Y. Yu, P. Li, J. Lopez, D. W. Yu, Y. H. Dong, W. W. Fan, Z. Shi, R. Xiong, C. J. Sun, I. Hwang, W. K. Lee, Y. Shao-Horn, J. A. Johnson, J. Li, Nat. Energy 2021, 6, 495–505.
- 10C. V. Amanchukwu, Z. Yu, X. Kong, J. Qin, Y. Cui, Z. N. Bao, J. Am. Chem. Soc. 2020, 142, 7393–7403.
- 11X. D. Ren, L. F. Zou, X. Cao, M. H. Engelhard, W. Liu, S. D. Burton, H. Lee, C. J. Niu, B. E. Matthews, Z. H. Zhu, C. M. Wang, B. W. Arey, J. Xiao, J. Liu, J. G. Zhang, W. Xu, Joule 2019, 3, 1662–1676.
- 12X. Ma, F. Shao, W. Li, Y. Zhang, J. Yan, J. Qian, J. Lin, X. Lin, Adv. Funct. Mater. 2024, 34, 2409144.
- 13J. Alvarado, M. A. Schroeder, M. H. Zhang, O. Borodin, E. Gobrogge, M. Olguin, M. S. Ding, M. Gobet, S. Greenbaum, Y. S. Meng, K. Xu, Mater. Today 2018, 21, 341–353.
- 14Q. F. Zheng, Y. Yamada, R. Shang, S. Ko, Y. Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291–298.
- 15Z. Zeng, X. Liu, X. Jiang, Z. Liu, Z. Peng, X. Feng, W. Chen, D. Xia, X. Ai, H. Yang, Y. Cao, InfoMat 2020, 2, 984–992.
- 16K. M. Diederichsen, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2017, 2, 2563–2575.
- 17H. Zhang, C. M. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, Z. B. Zhou, Chem. Soc. Rev. 2017, 46, 797–815.
- 18C. Wang, H. Liu, Y. Liang, D. Li, X. Zhao, J. Chen, W. Huang, L. Gao, L. Z. Fan, Adv. Funct. Mater. 2023, 33, 2209828.
- 19Y. X. Yao, X. Chen, C. Yan, X. Q. Zhang, W. L. Cai, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4090–4097.
- 20Y. Jie, X. Liu, Z. Lei, S. Wang, Y. Chen, F. Huang, R. Cao, G. Zhang, S. Jiao, Angew. Chem. Int. Ed. 2020, 59, 3505–3510.
- 21C. Wang, X. Zhao, D. Li, C. Yan, Q. Zhang, L. Z. Fan, Angew. Chem. Int. Ed. 2024, 63, e202317856.
- 22Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 2019, 4, 269–280.
- 23Z. Yu, N. P. Balsara, O. Borodin, A. A. Gewirth, N. T. Hahn, E. J. Maginn, K. A. Persson, V. Srinivasan, M. F. Toney, K. Xu, K. R. Zavadil, L. A. Curtiss, L. Cheng, ACS Energy Lett. 2022, 7, 461–470.
- 24Y. Liu, J. Li, X. Deng, S.-S. Chi, J. Wang, H. Zeng, Y. Jiang, T. Li, Z. Liu, H. Wang, G. Zhang, Y. Deng, C. Wang, Small 2024, 20, 2311812.
- 25Z. Yu, H. Wang, X. Kong, W. Huang, Y. Tsao, D. G. Mackanic, K. Wang, X. Wang, W. Huang, S. Choudhury, Y. Zheng, C. V. Amanchukwu, S. T. Hung, Y. Ma, E. G. Lomeli, J. Qin, Y. Cui, Z. Bao, Nat. Energy 2020, 5, 526–533.
- 26S. Han, P. Wen, H. Wang, Y. Zhou, Y. Gu, L. Zhang, Y. Shao-Horn, X. Lin, M. Chen, Nat. Mater. 2023, 22, 1515–1522.
- 27D. Guo, S. Thomas, J. K. El-Demellawi, Z. Shi, Z. Zhao, C. G. Canlas, Y. Lei, J. Yin, Y. Zhang, M. N. Hedhili, M. Arsalan, Y. Zhu, O. M. Bakr, O. F. Mohammed, H. N. Alshareef, Energy Environ. Sci. 2024, 17, 8151–8161.
- 28Q. Zheng, Y. Yamada, R. Shang, S. Ko, Y.-Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291–298.
- 29Y. M. Todorov, K. Fujii, N. Yoshimoto, D. Hirayama, M. Aoki, H. Mimura, M. Morita, Phys. Chem. Chem. Phys. 2017, 19, 31085–31093.
- 30Y. Gu, S. Fang, L. Yang, S.-i. Hirano, ACS Appl. Energy Mater. 2021, 4, 4919–4927.
- 31L. Chen, X. Shen, H. Chen, T. Wen, R. Rao, C. Zhang, Q. Meng, J. Zhang, Y. Ding, X. Ai, Y. Cao, Z. Chen, Energy Storage Mater. 2023, 55, 836–846.
- 32C. Yan, Y. X. Yao, X. Chen, X. B. Cheng, X. Q. Zhang, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2018, 57, 14055–14059.
- 33P. T. Xiao, X. R. Yun, Y. F. Chen, X. W. Guo, P. Gao, G. M. Zhou, C. M. Zheng, Chem. Soc. Rev. 2023, 52, 5255–5316.
- 34G. Leverick, Y. Shao-Horn, Adv. Energy. Mater. 2023, 13, 2204094.
- 35B. Ma, H. Zhang, R. Li, S. Zhang, L. Chen, T. Zhou, J. Wang, R. Zhang, S. Ding, X. Xiao, T. Deng, L. Chen, X. Fan, Nat. Chem. 2024, 16, 1427–1435.
- 36Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, J. Am. Chem. Soc. 2014, 136, 5039–5046.
- 37Y. L. Chen, Z. Yu, P. Rudnicki, H. X. Gong, Z. J. Huang, S. C. Kim, J. C. Lai, X. Kong, J. Qin, Y. Cui, Z. N. Bao, J. Am. Chem. Soc. 2021, 143, 18703–18713.
- 38H. A. Ishfaq, C. C. Cardona, E. Tchernychova, P. Johansson, R. Dominko, S. Drvarič Talian, Energy Storage Mater. 2024, 69, 103375.
- 39Y. Ugata, R. Tatara, J. Y. Ock, J. J. Zhang, K. Ueno, M. Watanabe, K. Dokko, J. Phys. Chem. C 2023, 127, 3977–3987.
- 40W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33–38.
- 41Y. Li, F. Wu, Y. Li, M. Q. Liu, X. Feng, Y. Bai, C. Wu, Chem. Soc. Rev. 2022, 51, 4484–4536.
- 42I. N. Levine, Quantum Chemistry, Seventh edition. Pearson, Boston, 2014.
- 43G. A. Giffin, Nat. Commun. 2022, 13, 5250.
- 44F. Chen, X. Wang, M. Armand, M. Forsyth, Nat. Mater. 2022, 21, 1175–1182.
- 45D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Matter 2020, 3, 57–94.
- 46W. P. Li, P. Wen, Y. Ren, W. Xie, J. Lin, M. Chen, Y. Yang, X. R. Lin, ACS Energy Lett. 2023, 8, 5128–5135.
- 47J. Chen, H. Lu, X. Kong, J. Liu, J. Liu, J. Yang, Y. Nuli, J. Wang, Angew. Chem. Int. Ed. 2024, 63, e202317923.
- 48Y. Wang, Z. Wu, F. M. Azad, Y. Zhu, L. Wang, C. J. Hawker, A. K. Whittaker, M. Forsyth, C. Zhang, Nat. Rev. Mater. 2023, 9, 119–133.
- 49K. Xu, Electrolytes, Interfaces and Interphases, The Royal Society of Chemistry, United Kingdom 2023.
10.1039/9781837671311 Google Scholar
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.