Artificial Mitochondria Nanoarchitectonics via a Supramolecular Assembled Microreactor Covered by ATP Synthase
Yang Xu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorFanchen Yu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorCorresponding Author
Yi Jia
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorXia Xu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorCorresponding Author
Prof. Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorYang Xu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorFanchen Yu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorCorresponding Author
Yi Jia
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorXia Xu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
Search for more papers by this authorCorresponding Author
Prof. Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
University of Chinese Academy of Sciences, 100049 Beijing, China
Search for more papers by this authorAbstract
Abiotic stress tends to induce oxidative damage to enzymes and organelles that in turns hampers the phosphorylation process and decreases the adenosine triphosphate (ATP) productivity. Artificial assemblies can alleviate abiotic stress and simultaneously provide nutrients to diminish the oxidative damage. Here, we have integrated natural acid phosphatase (ACP) and ATP synthase with plasmonic Au clusters in a biomimetic microreactor. ACP immobilized on the Au clusters is harnessed to generate proton influx to drive ATP synthase and concurrently supply phosphate to improve phosphorus availability to combat phosphorus-deficiency stress. In tandem with the reactive oxygen species (ROS) scavenging and the photothermal functionality of Au clusters, such an assembled microreactor exhibits an improved abiotic stress tolerance and achieves plasmon-accelerated ATP synthesis. This innovative approach offers an effective route to enhance the stress resistance of ATP synthase-based energy-generating systems, opening an exciting potential of these systems for biomimicking applications.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202411164-sup-0001-misc_information.pdf725.7 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Guindani, L. C. d Silva, S. Cao, T. Ivanov, K. Landfester, Angew. Chem. Int. Ed. 2022, 61, e202110855;
- 1bJ. Yang, C. Lin, Y. Feng, C. Wang, J. Ge, Y. Lu, Chem. Eng. J. 2022, 450, 138480;
- 1cJ. Luo, J. Chen, Y. Huang, L. You, Z. Dai, Biophysics Rev. 2023, 4, 011305;
- 1dA. K. Mengele, D. Weixler, S. Amthor, B. J. Eikmanns, G. M. Seibold, S. Rau, Angew. Chem. Int. Ed. 2022, 61, e202114842;
- 1eY. Lvov, K. Ariga, I. Ichinose, T. Kunitake, J. Am. Chem. Soc. 1995, 117, 6117–6123;
- 1fK. Ariga, T. Mori, T. Kitao, T. Uemura, Adv. Mater. 2020, 32, 1905657.
- 2
- 2aP. Albanese, F. Mavelli, E. Altamura, Bioeng. Biotech. 2023, 11, 1161730;
- 2bZ. Liu, W. Zhou, C. Qi, T. Kong, Adv. Mater. 2020, 32, 2002932;
- 2cQ. Xu, Z. Zhang, P. P. Y. Lui, L. Lu, X. Li, X. Zhang, Mater. Today Bio 2023, 23, 100877;
- 2dS. R. Pandya, H. Singh, M. F. Desimone, J. Singh, N. George, S. Jasani, Mater Adv 2024, 5, 409–431;
- 2eY. Zhang, L. Fu, S.-j. Jeon, J. Yan, J. P. Giraldo, K. Matyjaszewski, R. D. Tilton, G. V. Lowry, ACS Nano 2022, 16, 4467–4478;
- 2fJ. Liu, H. Zhou, W. R. Yang, K. Ariga, Acc. Chem. Res. 2020, 53, 644–653;
- 2gK. Ariga, Bull. Chem. Soc. Jpn. 2024, 97, uoad001.
- 3
- 3aZ. Li, F. Yu, X. Xu, T. Wang, J. Fei, J. Hao, J. Li, J. Am. Chem. Soc. 2023, 145, 20907–20912;
- 3bT. Wang, J. Fei, Z. Dong, X. Xu, W. Dong, J. Li, CCS Chem. 2023, 5, 1644–1652.
- 4
- 4aH. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Nature 1997, 386, 299–302;
- 4bR. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, C. D. Montemagno, Science 2000, 290, 1555–1558.
- 5Y. Jia, J. Li, Nat. Chem. Rev. 2019, 3, 361–374.
- 6R. Mittler, S. I. Zandalinas, Y. Fichman, F. Van Breusegem, Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679.
- 7
- 7aI. Ivanov, S. L. Castellanos, S. Balasbas, L. Otrin, N. Marušič, T. Vidaković Koch, K. Sundmacher, Annu. Rev. Chem. Biomol. Eng. 2021, 12, 287–308;
- 7bH. Park, W. Wang, S. H. Min, Y. Ren, K. Shin, X. Han, Biophysics Rev. 2023, 4, 011311.
- 8
- 8aA. Galatro, F. Ramos Artuso, M. Luquet, A. Buet, M. Simontacchi, Plant Sci. 2020, 11, 413;
- 8bD. Xing, Y. Wu, Bot. Stud. 2014, 55, 60;
- 8cL. Zhao, T. Bai, H. Wei, J. L. Gardea Torresdey, A. Keller, J. C. White, Nat. Food 2022, 3, 829–836.
- 9
- 9aZ. F. Ma, S. F. Sui, Angew. Chem. Int. Ed. 2002, 41, 2176–2179;
10.1002/1521-3773(20020617)41:12<2176::AID-ANIE2176>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 9bR. Wang, X. Ji, Z. Huang, Y. Xue, D. Wang, W. Yang, J. Phys. Chem. C 2016, 120, 377–385.
- 10W. Qi, L. Duan, K. Wang, X. Yan, Y. Citi, Q. He, J. Li, Adv. Mater. 2008, 20, 601–605.
- 11
- 11aX. Xu, J. Fei, Y. Xu, G. Li, W. Dong, H. Xue, J. Li, Angew. Chem. Int. Ed. 2021, 60, 7617–7620;
- 11bP. Turina, D. Samoray, P. Gräber, EMBO J. 2003, 22, 418–426.
- 12Y. Xu, J. Fei, G. Li, T. Yuan, Y. Li, C. Wang, X. Li, J. Li, Angew. Chem. Int. Ed. 2017, 56, 12903–12907.
- 13X. Meng, Y. Xu, B. Ma, Z. Ma, H. Han, Chem. Eng. J. 2022, 450, 137954.
- 14
- 14aZ. Fan, X. Huang, Y. Chen, W. Huang, H. Zhang, Nat. Protoc. 2017, 12, 2367–2378;
- 14bG. Medard, A. C. Papageorgiou, Nat. Chem. 2019, 11, 20–22;
- 14cH. Lee, Y. C. Chuang, J. Tsai, Y. Chen, P. Wu, L. Lo, J. Chiou, Y. Shen, ACS Appl. Nano Mater. 2023, 6, 21359–21370;
- 14dY. Li, Y. Lei, D. Li, A. Liu, Z. Zheng, H. Liu, J. Guo, S. Liu, C. Hao, D. He, ACS Catal. 2023, 13, 10177–10204;
- 14eK. Suzuki, X. Li, T. Toda, F. Nagasawa, K. Murakoshi, ACS Energy Lett. 2021, 6, 4374–4382;
- 14fC. Wang, X. Nie, Y. Shi, Y. Zhou, J. Xu, X. Xia, H. Chen, ACS Nano 2017, 11, 5897–5905.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.