Exploring Macroscopic Dipoles of Designed Cyclic Peptide Ordered Assemblies to Harvest Piezoelectric Properties
Souvik Panda Mahapatra
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorSaikat Pahan
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorAbhijit Chatterjee
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorSouvik Roy
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorD. R. Puneeth Kumar
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorCorresponding Author
Prof. Hosahudya N. Gopi
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorSouvik Panda Mahapatra
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorSaikat Pahan
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorAbhijit Chatterjee
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorSouvik Roy
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorD. R. Puneeth Kumar
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorCorresponding Author
Prof. Hosahudya N. Gopi
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune, 411008 India
Search for more papers by this authorAbstract
Crystalline materials exhibiting non-centrosymmetry and possessing substantial surface dipole moments play a critical role in piezoelectricity. Designing biocompatible self-assembled materials with these attributes is particularly challenging when compared to inorganic materials and ceramics. In this study, we elucidate the crystal conformations of novel cyclic peptides that exhibit self-assembly into tubular structures characterized by unidirectional hydrogen bonding and piezoelectric properties. Unlike cyclic peptides derived from alternating L- and D-amino acids, those derived from new δ-amino acids demonstrate the formation of self-assembled tubes with unidirectional hydrogen bonds. Further, the tightly packed tubular assemblies and higher macrodipole moments result in superior piezoelectric coefficients compared to peptides with lower macrodipole moments. Our findings underscore the potential for designing cyclic peptides with unidirectional hydrogen bonds, thereby paving the way for their application in design of biocompatible piezo- and ferroelectric materials.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409969-sup-0001-misc_information.pdf5.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Mondal, P. Tanari, S. Roy, S. Bhunia, R. Chowdhury, A. K. Pal, A. Datta, B. Pal, C. M. Reddy, Nat. Commun. 2023, 14, 6589;
- 1bM. Owczarek, K. A. Hujsak, D. P. Ferris, A. Prokofjevs, I. Majerz, P. Szklarz, H. Zhang, A. A. Sarjeant, C. L. Stern, R. Jakubas, S. Hong, V. P. Dravid, J. F. Stoddart, Nat. Commun. 2016, 7, 13108.
- 2
- 2aC. Zhao, H. Wu, F. Li, Y. Cai, Y. Zhang, D. Song, J. Wu, X. Lyu, J. Yin, D. Xiao, J. Zhu, S. J. Pennycook, J. Am. Chem. Soc. 2018, 140, 15252–15260;
- 2bA. Sood, M. Desseigne, A. Dev, L. Maurizi, A. Kumar, N. Millot, S. S. Han, Small 2023, 19, e2206401.
- 3
- 3aJ. Li, W. Qu, J. Daniels, H. Wu, L. Liu, J. Wu, M. Wang, S. Checchia, S. Yang, H. Lei, R. Lv, Y. Zhang, D. Wang, X. Li, X. Ding, J. Sun, Z. Xu, Y. Chang, S. Zhang, F. Li, Science 2023, 380, 87–93;
- 3bM. D. Nguyen, E. P. Houwman, M. Dekkers, G. Rijnders, ACS Appl. Mater. Interfaces 2017, 9, 9849–9861.
- 4
- 4aE. Fukada, I. Yasuda, Jpn. J. Appl. Phys. 1964, 3, 117;
- 4bJ. Kwon, H. Cho, Commun. Biol. 2022, 5, 1229.
- 5Y. Liu, H. L. Cai, M. Zeliskoc, Y. Wang, J. Sun, F. Yan, F. Ma, P. Wang, Q. N. Chen, H. Zheng, X. Meng, P. Sharma, Y. Zhang, J. Li, Proc. Natl. Acad. Sci. USA 2014, 111, E2780–E2786.
- 6B. Y. Lee, J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, S. W. Lee, Nat. Nanotechnol. 2012, 7, 351–356.
- 7R. Wang, J. Sui, X. Wang, ACS Nano 2022, 16, 17708–17728.
- 8
- 8aS. Bera, S. Guerin, H. Yuan, J. O′Donnell, N. P. Reynolds, O. Maraba, W. Ji, L. J. W. Shimon, P. A. Cazade, S. A. M. Tofail, D. Thompson, R. Yang, E. Gazit, Nat. Commun. 2021, 12, 2634;
- 8bH. Yuan, P. Han, Z. Tao, B. Xue, Y. Guo, D. Levy, W. Hu, Y. Wang, Y. Cao, E. Gazit, R. Yang, ACS Appl. Mater. Interfaces 2022, 14, 6538–6546;
- 8cV. Basavalingappa, S. Bera, B. Xue, J. O′Donnell, S. Guerin, P. A. Cazade, H. Yuan, E. U. Haq, C. Silien, K. Tao, L. J. W. Shimon, S. A. M. Tofail, D. Thompson, S. Kolusheva, R. Yang, Y. Cao, E. Gazit, ACS Nano 2020, 14, 7025–7037.
- 9
- 9aZ. X. Gan, X. L. Wu, X. B. Zhu, J. C. Shen, Angew. Chem. Int. Ed. 2013, 52, 2055; Angew. Chem. 2013, 125, 2109;
- 9bK. Ryan, J. Beirne, G. Redmond, J. I. Kilpatrick, J. Guyonnet, N. V. Buchete, A. L. Kholkin, B. J. Rodriguez, ACS Appl. Mater. Interfaces 2015, 7, 12702–12707;
- 9cJ. H. Lee, K. Heo, K. Schulz-Schönhagen, J. H. Lee, M. S. Desai, H. E. Jin, S. W. Lee, ACS Nano 2018, 12, 8138–8144.
- 10Y. Wang, S. Liu, L. Li, H. Li, Y. Yin, S. R. Lazar, S. Guerin, W. Ouyang, D. Thompson, R. Yang, K. Cai, E. Gazit, W. Ji, J. Am. Chem. Soc. 2023, 145, 15331–15342.
- 11S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson, C. McKeown, M. R. Noor, C. Silien, F. M. F. Rhen, A. L. Kholkin, N. Liu, T. Soulimane, S. A. M. Tofail, D. Thompson, Nat. Mater. 2018, 17, 180–186.
- 12
- 12aM. Reches, E. Gazit, Science 2003, 300, 625–627;
- 12bE. Gazit, Chem. Soc. Rev. 2007, 36, 1263–1269;
- 12cL. Adler-Abramovich, D. Aronov, P. Beker, M. Yevnin, S. Stempler, L. Buzhansky, G. Rosenman, E. Gazit, Nature Nanotech 2009, 4, 849–854;
- 12dX. Yan, P. Zhu, J. Li, Chem. Soc. Rev. 2010, 39, 1877–1890;
- 12eA. S. Tayi, A. Kaeser, M. Matsumoto, T. Aida, S. I. Stupp, Nat. Chem. 2015, 7, 281–294.
- 13
- 13aD. T. Bong, T. D. Clark, J. R. Granja, M. R. Ghadiri, Angew. Chem. Int. Ed. 2001, 40, 988–1011;
10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 1016–1041;
- 13bM. F. Perutz, J. T. Finch, J. Berriman, A. Lesk, Proc. Natl. Acad. Sci. USA 2002, 99, 5591–5595;
- 13cJ. Couet, J. D. J. S. Samuel, A. Kopyshev, S. Santer, M. Biesalski, Angew. Chem. Int. Ed. 2005, 44, 3297–3301, Angew. Chem. 2005, 117, 3361–3365;
- 13dR. Ni, W. S. Childers, K. I. Hardcastle, A. K. Mehta, D. G. Lynn, Angew. Chem. Int. Ed. 2012, 51, 6635–6638; Angew. Chem. 2012, 124, 6739;
- 13eS. V. Jadhav, R. Misra, H. N. Gopi, Chem. Eur. J. 2014, 20, 16523–16528;
- 13fF. Thomas, N. C. Burgess, A. R. Thomson, D. N. Woolfson, Angew. Chem. Int. Ed. 2016, 55, 987–991; Angew. Chem. 2016, 128, 999–1003;
- 13gD. R. Puneeth Kumar, Z. M. Bhat, S. Dey, S. Roy, S. Panda Mahapatra, S. Pahan, M. O. Thotiyl, H. N. Gopi, Chem. Eur. J. 2023, 29, e2023004.
- 14
- 14aP. De Santis, S. Morosetti, R. Rizzo, Macromolecules 1974, 7, 52–58;
- 14bM. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee, N. Khazanovich, Nature 1993, 366, 324–327;
- 14cM. R. Silk, B. Mohanty, J. B. Sampson, M. J. Scanlon, P. E. Thompson, D. K. Chalmers, Angew. Chem. Int. Ed. 2019, 58, 596–601; Angew. Chem. 2019, 131, 606–611;
- 14dI. Insua, J. Montenegro, J. Am. Chem. Soc. 2020, 142, 300–307.
- 15
- 15aD. Seebach, J. L. Matthews, A. Meden, T. Wessels, C. Baerlocher, L. B. McCusker, Helv. Chim. Acta 1997, 80, 173–182;
- 15bT. D. Clark, L. K. Buehler, M. R. Ghadiri, J. Am. Chem. Soc. 1998, 120, 651–656;
- 15cF. Fujimura, T. Hirata, T. Morita, S. Kimura, Y. Horikawa, J. Sugiyama, Biomacromolecules 2006, 7, 2394–2400;
- 15dF. Novelli, M. Vilela, A. Pazó, M. Amorín, J. R. Granja, Angew. Chem. Int. Ed. 2021, 60, 18838–18844; Angew. Chem. 2021, 133, 18986–18992.
- 16
- 16aM. Amorín, L. Castedo, J. R. Granja, J. Am. Chem. Soc. 2003, 125, 2844–2845;
- 16bM. Calvelo, A. Lamas, A. Guerra, M. Amorín, R. Garcia-Fandino, J. R. Granja, Chem. Eur. J. 2020, 26, 5846–5858.
- 17
- 17aD. Gauthier, P. Baillargeon, M. Drouin, Y. L. Dory, Angew. Chem. Int. Ed. 2001, 40, 4635–4638;
10.1002/1521-3773(20011217)40:24<4635::AID-ANIE4635>3.0.CO;2-D CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4771–4774;
- 17bS. Leclair, P. Baillargeon, R. Skouta, D. Gauthier, Y. Zhao, Y. L. Dory, Angew. Chem. Int. Ed. 2004, 43, 349–353; Angew. Chem. 2004, 116, 353–357;
- 17cA. Lamas, A. Guerra, M. Amorin, J. R. Granja, Chem. Sci. 2018, 9, 8228–8233.
- 18Q. Song, Z. Cheng, M. Kariuki, S. C. L. Hall, S. K. Hill, J. Y. Rho, S. Perrier, Chem. Rev. 2021, 121, 13936–13995.
- 19Y. Tabata, S. Mitani, H. Uji, T. Imai, S. Kimura, Polym. J. 2019, 51, 601–609.
- 20R. M. Reja, V. Kumar, G. George, R. Patel, D. R. Puneeth Kumar, S. Raghothama, H. N. Gopi, Chem. Eur. J. 2020, 26, 4304–4309.
- 21W. Ji, H. Yuan, B. Xue, S. Guerin, H. Li, L. Zhang, Y. Liu, L. J. W. Shimon, M. Si, Y. Cao, W. Wang, D. Thompson, K. Cai, R. Yang, E. Gazit, Angew. Chem. Int. Ed. 2022, 61, e2022012; Angew. Chem. 2022, 134, e202201234.
- 22R. M. Reja, R. Patel, V. Kumar, A. Jha, H. N. Gopi, Biomacromolecules 2019, 20, 1254–1262.
- 23T. Korenaga, H. Tanaka, T. Ema, T. Sakai, T. Korenaga, J. Fluorine Chem. 2003, 122, 201–205.
- 24G. R. Desiraju, T. Steiner, The Weak Hydrogen Bond: In structural Chemistry and Biology, Oxford University Press, Oxford, 1999, pp. 1–56.
- 25P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilakab, M. A. Spackman J. Appl. Crystallogr. 2021, 54, 1006–1011.
- 26S. V. Kalinin, A. Rar, S. Jesse, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 2006, 53, 2226–2252.
- 27C. T. Nelson, P. Gao, J. R. Jokisaari, C. Heikes, C. Adamo, A. Melville, S. H. Baek, C. M. Folkman, B. Winchester, Y. Gu, Y. Liu, K. Zhang, E. Wang, J. Li, L. Q. Chen, C. B. Eom, D. G. Schlom, X. Pan, Science 2011, 334, 968–971.
- 28A. Jalalian, A. M. Grishin, X. L. Wang, Z. X. Cheng, S. X. Dou, Appl. Phys. Lett. 2014, 104, 103112.
- 29M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.02 Gaussian 09, Inc., Wallingford CT 2009.
- 30G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
- 31
- 31aL. Adler-Abramovich, M. Reches, V. L. Sedman, S. Allen, S. J. B. Tendler, E. Gazit, Langmuir 2006, 22, 1313–1320;
- 31bM. Gupta, A. Bagaria, A. Mishra, P. Mathur, A. Basu, S. Ramakumar, V. S. Chauhan, Adv. Mater. 2007, 19, 858–861.
- 32S. Deswal, R. Panday, D. R. Naphade, P. A. Cazade, S. Guerin, J. K. Zareba, A. Steiner, S. Ogale, T. D. Anthopoulos, R. Boomishankar, Small 2023, 19, 2300792.
- 33J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2008, 4, 297–306.
- 34Deposition numbers 2337014 (for CP1), 2337018 (for CP2), 2337020 (for CP3), and 2337022 (for 2 b) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.