Realization of Long-Life Proton Battery by Layer Intercalatable Electrolyte
Peilin Liang
School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, Guangdong P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal)
Search for more papers by this authorShuanlong Di
Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal)
Search for more papers by this authorYuxin Zhu
Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorZhongbiao Li
School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, Guangdong P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorShulan Wang
Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Contribution: Supervision (equal)
Search for more papers by this authorCorresponding Author
Prof. Li Li
School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, Guangdong P. R. China
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorPeilin Liang
School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, Guangdong P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal)
Search for more papers by this authorShuanlong Di
Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning P. R. China
These authors contributed equally to this work.
Contribution: Conceptualization (equal), Data curation (equal), Formal analysis (equal)
Search for more papers by this authorYuxin Zhu
Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorZhongbiao Li
School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, Guangdong P. R. China
Contribution: Data curation (supporting)
Search for more papers by this authorShulan Wang
Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Contribution: Supervision (equal)
Search for more papers by this authorCorresponding Author
Prof. Li Li
School of Metallurgy, Northeastern University, Shenyang, 110819 P. R. China
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang, 110819, Liaoning P. R. China
Foshan Graduate School of Innovation, Northeastern University, Foshan, 528311, Guangdong P. R. China
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Proton batteries have attracted increasing interests because of their potential for grid-scale energy storage with high safety and great low-temperature performances. However, their development is significantly retarded by electrolyte design due to free water corrosion. Herein, we report a layer intercalatable electrolyte (LIE) by introducing trimethyl phosphate (TMP) into traditional acidic electrolyte. Different from conventional role in batteries, the presence of TMP intriguingly achieves co-intercalation of solvent molecules into the interlayer of anode materials, enabling a new working mechanism for proton reactions. The electrode corrosion was also strongly retarded with expanded electrochemical stability window. The half-cell therefore showed an outstanding long-term cycling stability with 91.0 % capacity retention at 5 A g−1 after 5000 cycles. Furthermore, the assembled full batteries can even deliver an ultra-long lifetime with a capacity retention of 74.9 % for 2 months running at −20 °C. This work provides new opportunities for electrolyte design of aqueous batteries.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409871-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. N. Ju, Q. Zhao, D. L. Chao, Y. Hou, H. G. Pan, W. P. Sun, Z. Y. Yuan, H. Li, T. Y. Ma, D. W. Su, B. H. Jia, Adv. Energy Mater. 2022, 12, 2201074;
- 1bS. G. Chen, M. F. Zhang, P. M. Zou, B. Y. Sun, S. W. Tao, Energy Environ. Sci. 2022, 15, 1805–1839.
- 2C. G. Wang, S. S. Zhao, X. X. Song, N. N. Wang, H. L. Peng, J. Su, S. Y. Zeng, X. J. Xu, J. Yang, Adv. Energy Mater. 2022, 12, 2200157.
- 3D. Strmcnik, P. P. Lopes, B. Genorio, V. R. Stamenkovic, N. M. Markovic, Nano Energy 2016, 29, 29–36.
- 4Y. K. Xu, X. Y. Wu, X. L. Ji, Small Structures 2021, 2, 2000113.
- 5J. Hu, Y. Ji, G. Zheng, W. Huang, Y. Lin, L. Yang, F. Pan, Aggregate 2022, 3, e153.
- 6M. C. Liao, X. Ji, Y. J. Cao, J. Xu, X. Qiu, Y. H. Xie, F. Wang, C. S. Wang, Y. Y. Xia, Nat. Commun. 2022, 13, 6064.
- 7Q. S. Nian, J. Y. Wang, S. Liu, T. J. Sun, S. B. Zheng, Y. Zhang, Z. L. Tao, J. Chen, Angew. Chem. Int. Ed. 2019, 58, 16994–16999.
- 8B. Raza, A. Naveed, J. H. Chen, H. C. Lu, T. Rasheed, J. Yang, Y. N. NuLi, J. L. Wang, Energy Storage Mater. 2022, 46, 523–534.
- 9Y. K. Xu, X. Y. Wu, H. Jiang, L. T. Tang, K. Y. Koga, C. Fang, J. Lu, X. L. Ji, Angew. Chem. Int. Ed. 2020, 59, 22007–22011.
- 10W. Wang, S. Chen, X. L. Liao, R. Huang, F. M. Wang, J. L. Chen, Y. X. Wang, F. Wang, H. Wang, Nat. Commun. 2023, 14, 5443.
- 11Q. Li, C. Y. Yang, J. X. Zhang, X. Ji, J. J. Xu, X. Z. He, L. Chen, S. Hou, J. Uddin, D. Addison, D. L. Sun, C. S. Wang, F. Wang, Angew. Chem. Int. Ed. 2022, 61, e202214126.
- 12Q. Fu, X. Y. Wu, X. L. Luo, S. Indris, A. Sarapulova, M. Bauer, Z. Q. Wang, M. Knapp, H. Ehrenberg, Y. J. Wei, S. Dsoke, Adv. Funct. Mater. 2022, 32, 2110674.
- 13C. Y. Yan, Z. X. Chen, H. Huang, X. Y. Deng, Angew. Chem. Int. Ed. 2023, 135, e202300523.
- 14J. C. Chen, S. L. Lei, S. X. Zhang, C. Y. Zhu, Q. Y. Liu, C. X. Wang, Z. W. Zhang, S. J. Wang, Y. C. Shi, L. W. Yin, R. T. Wang, Adv. Funct. Mater. 2023, 33, 2215027.
- 15Z. Su, H. C. Guo, C. Zhao, Nano-Micro Lett. 2023, 15, 96.
- 16
- 16aR. Dai, H. Liu, X. J. Zhi, S. L. Di, B. Y. Zhai, J. R. He, P. Niu, S. L. Wang, L. Li, Chem. Eng. J. 2022, 448, 137655;
- 16bH. C. Guo, D. Goonetilleke, N. Sharma, W. H. Ren, Z. Su, A. Rawal, C. A. Zhao, Cell Rep. Phys. Sci. 2020, 1, 100625.
- 17Z. Su, W. H. Ren, H. C. Guo, X. C. Peng, X. J. Chen, C. Zhao, Adv. Funct. Mater. 2020, 30, 2005477.
- 18S. C. Wu, J. B. Chen, Z. Su, H. C. Guo, T. W. Zhao, C. Jia, J. Stansby, J. Q. Tang, A. Rawal, Y. Fang, J. M. Ho, C. A. Zhao, Small 2022, 18, 2202992.
- 19
- 19aX. F. Wang, Y. M. Xie, K. Tang, C. Wang, C. L. Yan, Angew. Chem. Int. Ed. 2018, 57, 11569–11573;
- 19bW. J. Huang, K. Zhang, B. Yuan, L. C. Yang, M. Zhu, Energy Storage Mater. 2022, 50, 152–160.
- 20X. C. Peng, H. C. Guo, W. H. Ren, Z. Su, C. Zhao, Chem. Commun. 2020, 56, 11803–11806.
- 21
- 21aZ. Su, J. B. Chen, J. Stansby, C. Jia, T. W. Zhao, J. Q. Tang, Y. Fang, A. Rawal, J. M. Ho, C. Zhao, Small 2022, 18, 2201449;
- 21bW. Tang, L. L. Liu, S. Tian, L. Li, Y. B. Yue, Y. P. Wu, K. Zhu, Chem. Commun. 2011, 47, 10058–10060;
- 21cM. C. Liao, X. Ji, Y. J. Cao, J. Xu, X. Qiu, Y. H. Xie, F. Wang, C. S. Wang, Y. Y. Xia, Nat. Commun. 2022, 13, 6064;
- 21dT. J. Sun, H. H. Du, S. B. Zheng, J. Q. Shi, Z. L. Tao, Adv. Funct. Mater. 2021, 31, 2010127;
- 21eZ. M. Qin, Y. Song, Y. Z. Liu, X. X. Liu, Energy Storage Mater. 2022, 53, 569–579;
- 21fZ. Su, W. H. Ren, H. C. Guo, X. C. Peng, X. J. Chen, C. Zhao, Adv. Funct. Mater. 2020, 30, 2005477;
- 21gX. L. Yan, F. X. Wang, X. Su, J. Y. Ren, M. L. Qi, P. L. Bao, W. H. Chen, C. X. Peng, L. Chen, Adv. Mater. 2023, 35, 2305037;
- 21hX. L. Wang, J. Zhou, W. H. Tang, Energy Storage Mater. 2021, 36, 1–9;
- 21iH. Jiang, W. Shin, L. Ma, J. J. Hong, Z. X. Wei, Y. S. Liu, S. Y. Zhang, X. Y. Wu, Y. K. Xu, Q. B. Guo, M. A. Subramanian, W. F. Stickle, T. P. Wu, J. Lu, X. L. Ji, Adv. Energy Mater. 2020, 10, 2000968;
- 21jW. W. Xu, K. N. Zhao, X. B. Liao, C. L. Sun, K. He, Y. F. Yuan, W. H. Ren, J. T. Li, T. Y. Li, C. Yang, H. W. Cheng, Q. C. Sun, I. Manke, X. G. Lu, J. Lu, J. Am. Chem. Soc. 2022, 144, 17407–17415;
- 21kC. G. Wang, S. S. Zhao, X. X. Song, N. N. Wang, H. L. Peng, J. Su, S. Y. Zeng, X. J. Xu, J. Yang, Adv. Energy Mater. 2022, 12, 2200157;
- 21lZ. W. Guo, J. H. Huang, X. L. Dong, Y. Y. Xia, L. Yan, Z. Wang, Y. G. Wang, Nat. Commun. 2020, 11, 959;
- 21mY. K. Xu, X. Y. Wu, H. Jiang, L. T. Tang, K. Y. Koga, C. Fang, J. Lu, X. L. Ji, Angew. Chem. Int. Ed. 2020, 59, 22007–22011;
- 21nY. Hao, M. Yang, H. Ma, R. Li, X. Jing, X. Wang, H. Yu, Y. Dai, M. Li, Z. Wang, H. Li, X. Yan, G. Zhao, B. Wang, J. Liu, M. Hu, J. Yang, Energy Storage Mater. 2024, 70, 103445;
- 21oB. Gavriel, G. Bergman, M. Turgeman, A. Nimkar, Y. Elias, M. D. Levi, D. Sharon, N. Shpigel, D. Aurbach, Electrochim. Acta 2024, 478, 143817.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.