Axial Ligand Enables Synthesis of Allenylsilane through Dirhodium(II) Catalysis
Wendeng Li
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorRui Wu
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHao Ruan
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorBo Xiao
Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 P. R. China
Search for more papers by this authorXiang Gao
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorProf. Dr. Huanfeng Jiang
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorDr. Kai Chen
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Tian-Yu Sun
Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 P. R. China
Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shifa Zhu
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Search for more papers by this authorWendeng Li
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorRui Wu
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorHao Ruan
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorBo Xiao
Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 P. R. China
Search for more papers by this authorXiang Gao
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorProf. Dr. Huanfeng Jiang
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
Search for more papers by this authorDr. Kai Chen
College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Tian-Yu Sun
Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055 P. R. China
Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shifa Zhu
Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640 P. R. China
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018 P. R. China
Search for more papers by this authorAbstract
Described herein is a dirhodium(II)-catalyzed silylation of propargyl esters with hydrosilanes, using tertiary amines as axial ligands. By adopting this strategy, a range of versatile and useful allenylsilanes can be achieved with good yields. This reaction not only represents a SN2′-type silylation of the propargyl derivatives bearing a terminal alkyne moiety to synthesize allenylsilanes from simple hydrosilanes, but also represents a new application of dirhodium(II) complexes in catalytic transformation of carbon-carbon triple bond. The highly functionalized allenylsilanes that are produced can be transformed into a series of synthetically useful organic molecules. In this reaction, an intriguing ON-OFF effect of the amine ligand was observed. The reaction almost did not occur (OFF) without addition of Lewis base amine ligand. However, the reaction took place smoothly (ON) after addition of only catalytic amount of amine ligand. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that the reactivity can be delicately improved by the use of tertiary amine. The fine-tuning effect of the tertiary amine is crucial in the formation of the Rh−Si species via a concerted metalation deprotonation (CMD) mechanism and facilitating β-oxygen elimination.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409332-sup-0001-misc_information.pdf41.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. J. Timmons, M. P. Doyle, in Multiple Bonds Between Metal Atoms, 3rd ed. ; (Eds.: F. A. Cotton, C. A. Murillo, R. A. Walton), Springer, New York 2005, pp. 465–632;
- 1bR. Hrdina, Eur. J. Inorg. Chem. 2021, 501;
- 1cA. Abshire, D. Moore, J. Courtney, A. Darko, Org. Biomol. Chem. 2021, 19, 8886.
- 2
- 2aS. M. Wilkerson-Hill, H. M. L. Davies, in Rhodium Catalysis in Organic Synthesis (Ed.: K. Tanaka), Wiley-VCH, Weinheim 2019, pp. 343–372;
- 2bP. Müller, C. Fruit, Chem. Rev. 2003, 103, 2905;
- 2cA. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A. McKervey, Chem. Rev. 2015, 115, 9981;
- 2dD. Zhang, W.-H. Hu, Chem. Rec. 2017, 17, 739;
- 2eH. Keipour, V. Carreras, T. Ollevier, Org. Biomol. Chem. 2017, 15, 5441;
- 2fY.-Y. Ren, S.-F. Zhu, Q.-L. Zhou, Org. Biomol. Chem. 2018, 16, 3087;
- 2gK. O. Marichev, M. P. Doyle, Org. Biomol. Chem. 2019, 17, 4183;
- 2hH. M. L. Davies, K. Liao, Nat. Chem. Rev. 2019, 3, 347;
- 2iD. Zhu, L. Chen, H. Fan, Q. Yao, S. Zhu, Chem. Soc. Rev. 2020, 49, 908;
- 2jM. Ju, J. M. Schomaker, Nat. Chem. Rev. 2021, 5, 580;
- 2kX. Zhao, G. Wang, A. S. K. Hashmi, ChemCatChem 2021, 13, 4299;
- 2lY. He, Z. Huang, K. Wu, J. Ma, Y.-G. Zhou, Z. Yu, Chem. Soc. Rev. 2022, 51, 2759.
- 3
- 3aK. Dong, C. Pei, Q. Zeng, H. Wei, M. P. Doyle, X. Xu, ACS Catal. 2018, 8, 9543;
- 3bM. Mato, A. M. Echavarren, Angew. Chem. Int. Ed. 2019, 58, 2088;
- 3cA. S. Makarov, M. G. nUchuskin, A. S. K. Hashmi, Chem. Sci. 2019, 10, 8583;
- 3dM. Mato, M. Montesinos-Magraner, A. R. Sugranyes, A. M. Echavarren, J. Am. Chem. Soc. 2021, 143, 10760;
- 3eL. Zhang, B. M. DeMuynck, A. N. Paneque, J. E. Rutherford, D. A. Nagib, Science 2022, 377, 649;
- 3fJ. Chen, J. Han, J. Zhang, L. Li, Z. Zhang, Y. Yang, Y. Jiang, ACS Catal. 2022, 12, 14748;
- 3gN. van den Heuvel, S. M. Mason, B. Q. Mercado, S. J. Miller, J. Am. Chem. Soc. 2023, 145, 12377;
- 3hE. Palomo, A. K. Sharma, Z. Wang, L. Jiang, F. Maseras, M. G. Suero, J. Am. Chem. Soc. 2023, 145, 4975;
- 3iL. Li, C. Mi, G. Huang, M. Huang, Y. Zhu, S.-F. Ni, Z. Wang, Y. Huang, Angew. Chem. Int. Ed. 2023, 62, e202312793;
- 3jK. Korvorapun, Y. T. Boni, T. C. Maier, A. Bauer, T. Licher, J. E. Macor, V. Derdau, H. M. L. Davies, ACS Catal. 2023, 13, 2359.
- 4
- 4aD. C. Wynne, M. M. Olmstead, P. G. Jessop, J. Am. Chem. Soc. 2000, 122, 7638;
- 4bZ. Yang, Y. Guo, R. M. Koenigs, Chem. Commun. 2019, 55, 8410;
- 4cB. Wei, J. C. Sharland, P. Lin, S. M. Wilkerson-Hill, F. A. Fullilove, S. McKinnon, D. G. Blackmond, H. M. L. Davies, ACS Catal. 2020, 10, 1161;
- 4dC. J. Laconsay, A. Pla-Quintana, D. J. Tantillo, Organometallics 2021, 40, 4120;
- 4eX.-Q. Cui, M.-M. Zheng, X. Tang, Z.-Q. Zhang, X.-S. Xue, I. Marek, J.-A. Ma, F.-G. Zhang, Chem. Catal. 2023, 3, 100637.
- 5
- 5aA. F. Trindade, J. A. S. Coelho, C. A. M. Afonso, L. F. Veiros, P. M. P. Gois, ACS Catal. 2012, 2, 370;
- 5bB. Hong, L. Shi, L. Li, S. Zhan, Z. Gu, Green Synth. Catal. 2022, 3, 137;
- 5cR. Wu, D. Zhu, S. Zhu, Org. Chem. Front. 2023, 10, 2849.
- 6
- 6aA. N. Zaykov, Z. T. Ball, Tetrahedron 2011, 67, 4397;
- 6bV. N. Lindsay, C. Nicolas, A. B. Charette, J. Am. Chem. Soc. 2011, 133, 8972;
- 6cW. Sheffield, A. Abshire, A. Darko, Eur. J. Org. Chem. 2019, 2019, 6347;
- 6dD. Cressy, C. Zavala, A. Abshire, W. Sheffield, A. Darko, Dalton Trans. 2020, 49, 15779;
- 6eJ. C. Sharland, B. Wei, D. J. Hardee, T. R. Hodges, W. Gong, E. A. Voight, H. M. L. Davies, Chem. Sci. 2021, 12, 11181;
- 6fB. Wei, J. C. Sharland, D. G. Blackmond, D. G. Musaev, H. M. L. Davies, ACS Catal. 2022, 12, 13400;
- 6gJ. C. Sharland, D. Dunstan, D. Majumdar, J. Gao, K. Tan, H. A. Malik, H. M. L. Davies, ACS Catal. 2022, 12, 12530.
- 7
- 7aA. Fürstner, H. Krause, Adv. Synth. Catal. 2001, 343, 343;
- 7bP. M. Gois, A. F. Trindade, L. F. Veiros, Andre, M. T. Duarte, C. A. Afonso, S. Caddick, F. G. Cloke, Angew. Chem. Int. Ed. 2007, 46, 5750;
- 7cJ. Tan, Y. Kuang, Y. Wang, Q. Huang, J. Zhu, Y. Wang, Organometallics 2016, 35, 3139;
- 7dZ. Ma, Y. Wang, Org. Biomol. Chem. 2018, 16, 7470;
- 7eL. Shi, X. Xue, B. Hong, Q. Li, Z. Gu, ACS Cent. Sci. 2023, 9, 748;
- 7fW. Guo, S. Zhan, H. Yang, Z. Gu, Org. Lett. 2023, 25, 3281.
- 8
- 8aD. Wang, Y. Zhao, C. Yuan, J. Wen, Y. Zhao, Z. Shi, Angew. Chem. Int. Ed. 2019, 58, 12529;
- 8bW.-K. Lu, X.-Y. Zhu, L.-Q. Yang, X.-Y. Wu, X.-M. Xie, Z.-G. Zhang, ACS Catal. 2021, 11, 10190;
- 8cL. Yang, W. Lu, X. Wu, Y. Lu, X. Xie, Z. Zhang, Org. Chem. Front. 2024, 11, 448;
- 8dL. Yang, X. Wu, W. Lu, Y. Lu, Z. Zhang, Org. Lett. 2024, 26, 2287.
- 9
- 9aS. J. Na, B. Y. Lee, N. N. Bui, S. I. Mho, H. Y. Jang, J. Organomet. Chem. 2007, 692, 5523;
- 9bJ. A. S. Coelho, A. F. Trindade, R. Wanke, B. G. M. Rocha, L. F. Veiros, P. M. P. Gois, A. J. L. Pombeiro, C. A. M. Afonso, Eur. J. Org. Chem. 2013, 2013, 1471.
- 10
- 10aM. Kim, J. Kwak, S. Chang, Angew. Chem. Int. Ed. 2009, 48, 8935;
- 10bJ. Kwak, M. Kim, S. Chang, J. Am. Chem. Soc. 2011, 133, 3780;
- 10cL. Fu, S. Li, Z. Cai, Y. Ding, X.-Q. Guo, L.-P. Zhou, D. Yuan, Q.-F. Sun, G. Li, Nature Catalysis 2018, 1, 469;
- 10dH. Lv, X. Wang, Y. Hao, C. Ma, S. Li, G. Li, J. Zhang, Green Chem. 2023, 25, 554.
- 11
- 11aB. Lu, X. Liang, J. Zhang, Z. Wang, Q. Peng, X. Wang, J. Am. Chem. Soc. 2021, 143, 11799;
- 11bY. Yang, B. Lu, G. Xu, X. Wang, ACS Cent. Sci. 2022, 8, 581;
- 11cJ. Zhang, B. Lu, Z. Ge, L. Wang, X. Wang, Org. Lett. 2022, 24, 8423;
- 11dZ. Ge, B. Lu, H. Teng, X. Wang, Chem. Eur. J. 2023, 29, e202202820;
- 11eH. Chen, W. Yang, J. Zhang, B. Lu, X. Wang, J. Am. Chem. Soc. 2024, 146, 4727.
- 12
- 12aS. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074;
- 12bS. P. Swain, Synlett 2014, 25, 2085;
- 12cN. Krause, N. Arisetti, in Allenylsilanes (Update 2020), Science of Synthesis Knowledge Updates 2020/3 (Ed.: M. Oestreich), Thieme, Stuttgart 2020, pp. 43–112;
- 12dJ. Zhu, H. Xiang, H. Chang, J. C. Corcoran, R. Ding, Y. Xia, P. Liu, Y.-M. Wang, Angew. Chem. Int. Ed. 2024, 63, e202318040.
- 13
- 13aT. Kusumoto, T. Hiyama, Chem. Lett. 1985, 14, 1405;
- 13bT. Kusumoto, K. Ando, T. Hiyama, Bull. Chem. Soc. Jpn. 1992, 65, 1280;
- 13cJ. W. Han, N. Tokunaga, T. Hayashi, J. Am. Chem. Soc. 2001, 123, 12915;
- 13dM. Wang, Z.-L. Liu, X. Zhang, P.-P. Tian, Y.-H. Xu, T.-P. Loh, J. Am. Chem. Soc. 2015, 137, 14830;
- 13eW. Chen, C. Jiang, J. Zhang, J. Xu, L. Xu, X. Xu, J. Li, C. Cui, J. Am. Chem. Soc. 2021, 143, 12913;
- 13fH. Chen, C. Zhu, H. Yue, M. Rueping, Angew. Chem. Int. Ed. 2023, 62, e202306498;
- 13gZ.-L. Wang, Q. Li, M.-W. Yang, Z.-X. Song, Z.-Y. Xiao, W.-W. Ma, J.-B. Zhao, Y.-H. Xu, Nat. Commun. 2023, 14, 5048.
- 14
- 14aI. Fleming, N. K. Terrett, J. Organomet. Chem. 1984, 264, 99;
- 14bI. Fleming, K. Takaki, A. P. Thomas, J. Chem. Soc.-Perkin Trans. 1987, 1, 2269;
- 14cT. Harada, T. Katsuhira, A. Osada, K. Iwazaki, K. Maejima, A. Oku, J. Am. Chem. Soc. 1996, 118, 11377;
- 14dC. K. Hazra, M. Oestreich, Org. Lett. 2012, 14, 4010;
- 14eV. N. Bochatay, Y. Sanogo, F. Chemla, F. Ferreira, O. Jackowski, A. Pérez-Luna, Adv. Synth. Catal. 2015, 357, 2809;
- 14fV. N. Bochatay, Z. Neouchy, F. Chemla, F. Ferreira, O. Jackowski, A. Perez-Luna, Synthesis 2016, 48, 3287;
- 14gJ. Kjellgren, H. Sundén, K. J. Szabó, J. Am. Chem. Soc. 2005, 127, 1787;
- 14hH. Ohmiya, H. Ito, M. Sawamura, Org. Lett. 2009, 11, 5618;
- 14iD. J. Vyas, C. K. Hazra, M. Oestreich, Org. Lett. 2011, 13, 4462;
- 14jX.-H. Chang, Z.-L. Liu, Y.-C. Luo, C. Yang, X.-W. Liu, B.-C. Da, J.-J. Li, T. Ahmad, T.-P. Loh, Y.-H. Xu, Chem. Commun. 2017, 53, 9344;
- 14kZ.-L. Liu, C. Yang, Q.-Y. Xue, M. Zhao, C.-C. Shan, Y.-H. Xu, T.-P. Loh, Angew. Chem. Int. Ed. 2019, 58, 16538;
- 14lK. Guo, A. W. Kleij, Org. Lett. 2020, 22, 3942;
- 14mT. J. O′Connor, B. K. Mai, J. Nafie, P. Liu, F. D. Toste, J. Am. Chem. Soc. 2021, 143, 13759;
- 14nK. Guo, Q. Zeng, A. Villar-Yanez, C. Bo, A. W. Kleij, Org. Lett. 2022, 24, 637;
- 14oH. Zhang, L.-J. Jiang, M. Yang, Y.-H. Liu, Org. Chem. Front. 2023, 10, 3598;
- 14pC.-H. Xu, Z.-Q. Xiong, J.-H. Qin, X.-H. Xu, J.-H. Li, Org. Lett. 2023, 25, 7263;
- 14qH. Miura, M. Doi, Y. Yasui, Y. Masaki, H. Nishio, T. Shishido, J. Am. Chem. Soc. 2023, 145, 4613.
- 15
- 15aC. Deutsch, B. H. Lipshutz, N. Krause, Angew. Chem. Int. Ed. 2007, 46, 1650;
- 15bC. Deutsch, B. H. Lipshutz, N. Krause, Org. Lett. 2009, 11, 5010;
- 15cC. Zhong, Y. Sasaki, H. Ito, M. Sawamura, Chem. Commun. 2009, 39, 5850.
- 16
- 16aB. Raya, S. Biswas, T. V. RajanBabu, ACS Catal. 2016, 6, 6318;
- 16bJ. Guo, X. Shen, Z. Lu, Angew. Chem. Int. Ed. 2017, 56, 615;
- 16cD. Decker, H.-J. Drexler, D. Heller, T. Beweries, Catal. Sci. Technol. 2020, 10, 6449;
- 16dG. L. Larson, R. J. Liberatore, Org. Process Res. Dev. 2021, 25, 1719;
- 16eK. Chen, H.-D. Zhu, Y.-L. Li, Q. Peng, Y.-L. Guo, X.-M. Wang, ACS Catal. 2021, 11, 13696.
- 17
- 17aP. He, M.-Y. Hu, X.-Y. Zhang, S.-F. Zhu, Synthesis 2022, 54, 49;
- 17bL. Li, W.-S. Huang, Z. Xu, L.-W. Xu, Sci. China Chem. 2023, 66, 1654;
- 17cM. Iglesias, F. J. Fernández-Alvarez, L. A. Oro, in Perspectives of Hydrosilylation Reactions (Eds.: B. Marciniec, H. Maciejewski), Springer, Cham 2023, pp. 95–119.
10.1007/3418_2023_100 Google Scholar
- 18J.-S. Zhang, L. Liu, T.-Q. Chen, L.-B. Han, ChemSusChem 2020, 13, 4776.
- 19H. Miura, Y. Yasui, Y. Masaki, M. Doi, T. Shishido, ACS Catal. 2023, 13, 6787.
- 20
- 20aR. Wu, J. Lu, T. Cao, J. Ma, K. Chen, S. Zhu, J. Am. Chem. Soc. 2021, 143, 14916;
- 20bC. Wang, R. Wu, K. Chen, S. Zhu, Angew. Chem. Int. Ed. 2023, 62, e202305864.
- 21
- 21aC. Conifer, C. Gunanathan, T. Rinesch, M. Hölscher, W. Leitner, Eur. J. Inorg. Chem. 2014, 2015, 333;
- 21bS. W. Roh, K. Choi, C. Lee, Chem. Rev. 2019, 119, 4293.
- 22
- 22aS. E. Denmark, G. L. Beutner, Angew. Chem. Int. Ed. 2008, 47, 1560;
- 22bY. Ma, S.-J. Lou, G. Luo, Y. Luo, G. Zhan, M. Nishiura, Y. Luo, Z. Hou, Angew. Chem. Int. Ed. 2018, 57, 15222.
- 23
- 23aK. P. Kornecki, J. F. Berry, D. C. Powers, T. Ritter, in Progress in Inorganic Chemistry, Vol. 58 (Ed.: K. D. Karlin), Wiley, Hoboken 2014, pp. 225–302;
- 23bE. Warzecha, T. C. Berto, C. C. Wilkinson, J. F. Berry, J. Chem. Educ. 2019, 96, 571.
- 24
- 24aG. G. Christoph, Y. B. Koh, J. Am. Chem. Soc. 1979, 101 1422;
- 24bR. S. Drago, J. R. Long, R. Cosmano, Inorg. Chem. 1981, 20 2920;
- 24cC. Bilgrien, R. S. Drago, G. C. Vogel, J. Stahlbush, Inorg. Chem. 1986, 25, 2864.
- 25O. Stepanović, A. Bismuto, M. G. Luraschi, B. Morandi, Nat. Synth. 2022, 1, 787.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.