Confining Conversion Chemistry in Intercalation Host for Aqueous Batteries
Qiuyue Gui
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorWenjun Cui
Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorDeliang Ba
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorProf. Xiahan Sang
Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorCorresponding Author
Prof. Yuanyuan Li
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Jinping Liu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorQiuyue Gui
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorWenjun Cui
Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorDeliang Ba
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorProf. Xiahan Sang
Nanostructure Research Center, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorCorresponding Author
Prof. Yuanyuan Li
School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Jinping Liu
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, Hubei, 430070 China
Search for more papers by this authorAbstract
Conversion-type anode materials with high theoretical capacities play a pivotal role in developing future aqueous rechargeable batteries (ARBs). However, their sustainable applications have long been impeded by the poor cycling stability and sluggish redox kinetics. Here we show that confining conversion chemistry in intercalation host could overcome the above challenges. Using sodium titanates as a model intercalation host, an integrated layered anode material of iron oxide hydroxide-pillared titanate (FeNTO) is demonstrated. The conversion reaction is spatially and kinetically confined within sub-nano interlayer, enabling superlow redox polarization (ca. 4–6 times reduced), ultralong lifespan (up to 8700 cycles) and excellent rate performance. Notably, the charge compensation of interlayer via universal cation intercalation into host endows FeNTO with the capability of operating well in a broad range of aqueous electrolytes (Li+, Na+, K+, Mg2+, Ca2+, etc.). We further demonstrate the large-scale synthesis of FeNTO thin film and powder, and rational design of quasi-solid-state high-voltage ARB pouch cells powering wearable electronics against extreme mechanical abuse. This work demonstrates a powerful confinement means to access disruptive electrode materials for next-generation energy devices.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202409098-sup-0001-misc_information.pdf7.9 MB | Supporting Information |
ange202409098-sup-0001-Movie_S1-FeNTO-Hydrogen_evolution.mp45.9 MB | Supporting Information |
ange202409098-sup-0001-Movie_S2-Fe3O4-Hydrogen_evolution.mp45.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Goodenough, Nat. Electron. 2018, 1, 204.
- 2J. Ding, W. Hu, E. Paek, D. Mitlin, Chem. Rev. 2018, 118, 6457.
- 3Y. Liang, Y. Yao, Nat. Rev. Mater. 2022, 8, 109.
- 4
- 4aL. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, K. Xu, Science 2015, 350, 938;
- 4bY. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Nat. Energy 2016, 1, 1;
- 4cH. Bi, X. Wang, H. Liu, Y. He, W. Wang, W. Deng, X. Ma, Y. Wang, W. Rao, Y. Chai, H. Ma, R. Li, J. Chen, Y. Wang, M. Xue, Adv. Mater. 2020, 32, e2000074;
- 4dJ. Xie, Z. Liang, Y. C. Lu, Nat. Mater. 2020, 19, 1006.
- 5H. Zhang, X. Liu, H. Li, I. Hasa, S. Passerini, Angew. Chem. Int. Ed. 2021, 60, 598.
- 6
- 6aY. Xu, T. Ding, D. Sun, X. Ji, X. Zhou, Adv. Funct. Mater. 2022, 33, 2211290;
- 6bZ. Ju, Q. Zhao, D. Chao, Y. Hou, H. Pan, W. Sun, Z. Yuan, H. Li, T. Ma, D. Su, B. Jia, Adv. Energy Mater. 2022, 12, 2201074.
- 7J. Tan, W. Zhu, Q. Gui, Y. Li, J. Liu, Adv. Funct. Mater. 2021, 31, 2101027.
- 8
- 8aJ. Li, X. Yuan, C. Lin, Y. Yang, L. Xu, X. Du, J. Xie, J. Lin, J. Sun, Adv. Energy Mater. 2017, 7, 1602725;
- 8bC. Wang, S. Chen, H. Xie, S. Wei, C. Wu, L. Song, Adv. Energy Mater. 2019, 9, 1802977;
- 8cM. R. Lukatskaya, O. Mashtalir, C. E. Ren, Y. Dall′Agnese, P. Rozier, P. L. Taberna, M. Naguib, P. Simon, M. W. Barsoum, Y. Gogotsi, Science 2013, 341, 1502.
- 9
- 9aS. Fleischmann, Y. Zhang, X. Wang, P. T. Cummings, J. Wu, P. Simon, Y. Gogotsi, V. Presser, V. Augustyn, Nat. Energy 2022, 7, 222;
- 9bS. Boyd, K. Ganeshan, W. Y. Tsai, T. Wu, S. Saeed, D. E. Jiang, N. Balke, A. C. T. van Duin, V. Augustyn, Nat. Mater. 2021, 20, 1689;
- 9cA. Sugahara, Y. Ando, S. Kajiyama, K. Yazawa, K. Gotoh, M. Otani, M. Okubo, A. Yamada, Nat. Commun. 2019, 10, 850.
- 10Q. Zhu, J. Li, P. Simon, B. Xu, Energy Storage Mater. 2021, 35, 630.
- 11Q. Gui, D. Ba, Z. Zhao, Y. Mao, W. Zhu, T. Lei, J. Tan, B. Deng, L. Xiao, Y. Li, J. Liu, Small Methods 2019, 3, 1800371.
- 12
- 12aY. Zeng, Z. Lin, Y. Meng, Y. Wang, M. Yu, X. Lu, Y. Tong, Adv. Mater. 2016, 28, 9188;
- 12bH. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, Nat. Commun. 2012, 3, 917;
- 12cJ. Liu, C. Guan, C. Zhou, Z. Fan, Q. Ke, G. Zhang, C. Liu, J. Wang, Adv. Mater. 2016, 28, 8732;
- 12dC. Guan, W. Zhao, Y. Hu, Q. Ke, X. Li, H. Zhang, J. Wang, Adv. Energy Mater. 2016, 6, 1601034;
- 12eJ. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison, Science 2017, 356, 415;
- 12fS. Chen, Y. Xia, R. Zeng, Z. Luo, X. Wu, X. Hu, J. Lu, E. Gazit, H. Pan, Z. Hong, M. Yan, K. Tao, Y. Jiang, Sci. Adv. 2024, 10, eadn2265.
- 13
- 13aY. Zeng, Z. Lin, Z. Wang, M. Wu, Y. Tong, X. Lu, Adv. Mater. 2018, 30, e1707290;
- 13bR. Li, Y. Wang, C. Zhou, C. Wang, X. Ba, Y. Li, X. Huang, J. Liu, Adv. Funct. Mater. 2015, 25, 5384;
- 13cY. Jiang, D. Zhao, D. Ba, Y. Li, J. Liu, Adv. Mater. Interfaces 2018, 5, 1801043;
- 13dS. J. Zhang, J. Hao, Y. Zhu, H. Li, Z. Lin, S. Z. Qiao, Angew. Chem. Int. Ed. 2023, 135, e202301570.
- 14J. Jiang, J. Liu, Interdiscip. Mater. 2022, 1, 116.
- 15
- 15aJ. Liu, M. Chen, L. Zhang, J. Jiang, J. Yan, Y. Huang, J. Lin, H. J. Fan, Z. X. Shen, Nano Lett. 2014, 14, 7180;
- 15bZ. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang, N. Yu, Y. Zhu, L. Fu, F. Wang, Y. Chen, Y. Wu, NPG Asia Mater. 2019, 11, 12.
- 16
- 16aZ. He, F. Xiong, S. Tan, X. Yao, C. Zhang, Q. An, Mater. Today 2021, 11, 100156;
- 16bC. Yang, A. K. Manohar, S. R. Narayanan, J. Electrochem. Soc. 2017, 164, A418;
- 16cZ. Jin, P. Li, Y. Jin, D. Xiao, Energy Storage Mater. 2018, 13, 160.
- 17Y. Zeng, Y. Han, Y. Zhao, Y. Zeng, M. Yu, Y. Liu, H. Tang, Y. Tong, X. Lu, Adv. Energy Mater. 2015, 5, 1402176.
- 18
- 18aZ. Jin, P. Li, Y. Meng, Z. Fang, D. Xiao, G. Yu, Nat. Catal. 2021, 4, 615;
- 18bG. Z. Zhu, G. Radtke, G. A. Botton, Nature 2012, 490, 384.
- 19
- 19aM. Wang, N. R. Jaegers, M. S. Lee, C. Wan, J. Z. Hu, H. Shi, D. Mei, S. D. Burton, D. M. Camaioni, O. Y. Gutierrez, V. A. Glezakou, R. Rousseau, Y. Wang, J. A. Lercher, J. Am. Chem. Soc. 2019, 141, 3444;
- 19bS. Kang, A. Singh, K. G. Reeves, J.-C. Badot, S. Durand-Vidal, C. Legein, M. Body, O. Dubrunfaut, O. J. Borkiewicz, B. Tremblay, C. Laberty-Robert, D. Dambournet, Chem. Mater. 2020, 32, 9458;
- 19cJ. Ma, K. G. Reeves, A.-G. Porras Gutierrez, M. Body, C. Legein, K. Kakinuma, O. J. Borkiewicz, K. W. Chapman, H. Groult, M. Salanne, D. Dambournet, Chem. Mater. 2017, 29, 8313.
- 20X.-M. Lin, C. Han, X.-T. Yang, J.-S. Lin, W.-Q. Yang, H.-X. Guo, Y.-H. Wang, J.-C. Dong, J.-F. Li, Nano Res. 2023, 17, 245.
- 21A. Bach Delpeuch, F. Maillard, M. Chatenet, P. Soudant, C. Cremers, Appl. Catal. B 2016, 181, 672.
- 22S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Small 2014, 10, 2270.
- 23R. Jia, F. Zhu, S. Sun, T. Zhai, H. Xia, J. Power Sources 2017, 341, 427.
- 24X. Wu, Z. Lu, W. Zhu, Q. Yang, G. Zhang, J. Liu, X. Sun, Nano Energy 2014, 10, 229.
- 25S. Shivakumara, T. R. Penki, N. Munichandraiah, Mater. Lett. 2014, 131, 100.
- 26J. Liu, M. Zheng, X. Shi, H. Zeng, H. Xia, Adv. Funct. Mater. 2016, 26, 919.
- 27X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, J. Mater. Chem. A 2015, 3, 20927.
- 28C. Sun, W. Pan, D. Zheng, Y. Zheng, J. Zhu, C. Liu, ACS Omega 2020, 5, 4532.
- 29N. Iqbal, X. Wang, A. A. Babar, G. Zainab, J. Yu, B. Ding, Sci. Rep. 2017, 7, 15153.
- 30T. Liu, Y. Ling, Y. Yang, L. Finn, E. Collazo, T. Zhai, Y. Tong, Y. Li, Nano Energy 2015, 12, 169.
- 31S. Qiu, M. Lucero, X. Wu, Q. Wang, M. Wang, Y. Wang, W. S. Samarakoon, M. R. Bolding, Z. Yang, Y. Huang, Z. J. Xu, M. Gu, Z. Feng, ACS Mater. Au 2022, 2, 63.
- 32V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P. L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 33C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Nat. Commun. 2015, 6, 6929.
- 34J. Shao, X. Li, Q. Qu, Y. Wu, J. Power Sources 2013, 223, 56.
- 35N. S. Akhmetov, General and inorganic chemistry, MIR Publishers, 1983.
- 36M. Clites, E. Pomerantseva, Energy Storage Mater. 2018, 11, 30.
- 37J. Zhu, J. Jiang, Z. Sun, J. Luo, Z. Fan, X. Huang, H. Zhang, T. Yu, Small 2014, 10, 2937.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.