Paired Electrolysis Enables Reductive Heck Coupling of Unactivated (Hetero)Aryl Halides and Alkenes
Yihuan Lai
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853 United States
Search for more papers by this authorCorresponding Author
Phillip J. Milner
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853 United States
Search for more papers by this authorYihuan Lai
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853 United States
Search for more papers by this authorCorresponding Author
Phillip J. Milner
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853 United States
Search for more papers by this authorAbstract
The formation of carbon-carbon (C−C) bonds is a cornerstone of organic synthesis. Among various methods to construct Csp2−Csp3 bonds, the reductive Heck reaction between (hetero)aryl halides and alkenes stands out due to its potential efficiency and broad substrate availability. However, traditional reductive Heck reactions are limited by the use of precious metal catalysts and/or limited aryl halide and alkene compatibility. Here, we present an electrochemically mediated, metal- and catalyst-free reductive Heck reaction that tolerates both unactivated (hetero)aryl halides and diverse alkenes such as vinyl boronates and silanes. Detailed electrochemical and deuterium-labeling studies support that this transformation likely proceeds through a paired electrolysis pathway, in which acid generated by the oxidation of N,N-diisopropylethylamine (DIPEA) at the anode intercepts an alkyl carbanion formed after radical-polar crossover at the cathode. As such, this approach offers a sustainable method for the construction of Csp2−Csp3 bonds from (hetero)aryl halides and alkenes, paving the way for the development of other electrochemically mediated olefin difunctionalization reactions.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202408834-sup-0001-misc_information.pdf6.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T.-Y. Luh, M. Leung, K.-T. Wong, Chem. Rev. 2000, 100, 3187–3204.
- 2D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116, 9850–9913.
- 3C. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292.
- 4C.-J. Li, Chem. Rev. 2005, 105, 3095–3166.
- 5H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66–77.
- 6K. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442–4489.
- 7S. Tabassum, A. F. Zahoor, S. Ahmad, R. Noreen, S. G. Khan, H. Ahmad, Mol. Divers 2022, 26, 647–689.
- 8V. B. Phapale, D. J. Cárdenas, Chem. Soc. Rev. 2009, 38, 1598–1607.
- 9Muzammil, A. F. Zahoor, B. Parveen, S. Javed, R. Akhtar, S. Tabassum, Chem. Pap. 2024, 1–32.
- 10M. Rueping, B. J. Nachtsheim, Beilstein J. Org. Chem. 2010, 6, 6.
- 11M. M. Heravi, V. Zadsirjan, P. Saedi, T. Momeni, RSC Adv. 2018, 8, 40061–40163.
- 12R. K. Dhungana, S. Kc, P. Basnet, R. Giri, Chem. Rec. 2018, 18, 1314–1340.
- 13Z.-L. Li, G.-C. Fang, Q.-S. Gu, X.-Y. Liu, Chem. Soc. Rev. 2020, 49, 32–48.
- 14M. Patel, B. Desai, A. Sheth, B. Z. Dholakiya, T. Naveen, Asian J. Org. Chem. 2021, 10, 3201–3232.
- 15L. M. Wickham, R. Giri, Acc. Chem. Res. 2021, 54, 3415–3437.
- 16A. Nakazaki, U. Sharma, M. A. Tius, Org. Lett. 2002, 4, 3363–3366.
- 17C. Wang, G. Xiao, T. Guo, Y. Ding, X. Wu, T.-P. Loh, J. Am. Chem. Soc. 2018, 140, 9332–9336.
- 18J. Diccianni, Q. Lin, T. Diao, Acc. Chem. Res. 2020, 53, 906–919.
- 19T. Ghosh, ChemistrySelect. 2019, 4, 4747–4755.
- 20L. J. Oxtoby, J. A. Gurak, S. R. Wisniewski, M. D. Eastgate, K. M. Engle, Trends Chem. 2019, 1, 572–587.
- 21X.-F. Wu, H. Neumann, M. Beller, Chem. Soc. Rev. 2011, 40, 4986–5009.
- 22W. Kong, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017, 56, 3987–3991.
- 23J. A. Gurak, K. M. Engle, ACS Catal. 2018, 8, 8987–8992.
- 24S. A. Lebedev, V. S. Lopatina, E. S. Petrov, I. P. Beletskaya, J. Organomet. Chem. 1988, 344, 253–259.
- 25R. Sustmann, P. Hopp, P. Holl, Tetrahedron Lett. 1989, 30, 689–692.
- 26P. Shukla, A. Sharma, B. Pallavi, C. H. Cheng, Tetrahedron 2015, 71, 2260–2266.
- 27I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76–80.
- 28I. Ghosh, T. Ghosh, J. I. Bardagi, B. König, Science 2014, 346, 725–728.
- 29N. G. W. Cowper, C. P. Chernowsky, O. P. Williams, Z. K. Wickens, J. Am. Chem. Soc. 2020, 142, 2093–2099.
- 30A. F. Chmiel, O. P. Williams, C. P. Chernowsky, C. S. Yeung, Z. K. Wickens, J. Am. Chem. Soc. 2021, 143, 10882–10889.
- 31H. Kim, H. Kim, T. H. Lambert, S. Lin, J. Am. Chem. Soc. 2020, 142, 2087–2092.
- 32J. Lan, R. Chen, F. Duo, M. Hu, X. Lu, Molecules 2022, 27, 5364.
- 33J. P. Cole, D.-F. Chen, M. Kudisch, R. M. Pearson, C.-H. Lim, G. M. Miyake, J. Am. Chem. Soc. 2020, 142, 13573–13581.
- 34A. J. Boyington, M.-L. Y. Riu, N. T. Jui, J. Am. Chem. Soc. 2017, 139, 6582–6585.
- 35H. Cheng, T. Lam, Y. Liu, Z. Tang, C. Che, Angew. Chem. Int. Ed. 2021, 60, 1383–1389.
- 36M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319.
- 37R. H. Verschueren, W. M. De Borggraeve, Molecules 2019, 24, 2122.
- 38Y. Lai, A. Halder, J. Kim, T. J. Hicks, P. J. Milner, Angew. Chem. Int. Ed. 2023, 62, e202310246.
- 39K. Mitsudo, Y. Nakagawa, J. Mizukawa, H. Tanaka, R. Akaba, T. Okada, S. Suga, Electrochim. Acta. 2012, 82, 444–449.
- 40Y. Wang, Z. Zhao, D. Pan, S. Wang, K. Jia, D. Ma, G. Yang, X. Xue, Y. Qiu, Angew. Chem. Int. Ed. 2022, 61, e202210201.
- 41G. Sun, S. Ren, X. Zhu, M. Huang, Y. Wan, Org. Lett. 2016, 18, 544–547.
- 42A. A. Folgueiras-Amador, A. E. Teuten, M. Salam-Perez, J. E. Pearce, G. Denuault, D. Pletcher, P. J. Parsons, D. C. Harrowven, R. C. D. Brown, Angew. Chem. Int. Ed. 2022, 61, e202203694.
- 43J. Hong, Q. Liu, F. Li, G. Bai, G. Liu, M. Li, O. S. Nayal, X. Fu, F. Mo, Chin. J. Chem. 2019, 37, 347–351.
- 44Z. Chami, M. Gareil, J. Pinson, J. M. Saveant, A. Thiebault, J. Org. Chem. 1991, 56, 586–595.
- 45N. Sbei, T. Hardwick, N. Ahmed, ACS Sustainable Chem. Eng. 2021, 9, 6148–6169.
- 46F. Marken, A. J. Cresswell, S. D. Bull, Chem. Rec. 2021, 21, 2585–2600.
- 47W. Zhang, N. Hong, L. Song, N. Fu, Chem. Rec. 2021, 21, 2574–2584.
- 48K. Jiao, X. Gao, C. Ma, P. Fang, T. Mei, Isr. J. Chem. 2024, 64, e202300085.
- 49L. F. T. Novaes, J. Liu, Y. Shen, L. Lu, J. M. Meinhardt, S. Lin, Chem. Soc. Rev. 2021, 50, 7941–8002.
- 50X. Fu, T. Ran, Y. Zhou, J. Liu, J. Org. Chem. 2023, 88, 6132–6139.
- 51S. A. Adesanya, R. Nia, M.-T. Martin, N. Boukamcha, A. Montagnac, M. Païs, J. Nat. Prod. 1999, 62, 1694–1695.
- 52M. P. Silva, L. Saraiva, M. Pinto, M. E. Sousa, Molecules 2020, 25, 4323.
- 53A. Ahmed, I. Mushtaq, S. Chinnam, Futur. J. Pharm. Sci. 2023, 9, 67.
- 54H. Yamamoto, A. Banerjee, Synfacts 2017, 13, 0402.
10.1055/s-0036-1590157 Google Scholar
- 55Y. Huang, M. K. Brown, Angew. Chem. Int. Ed. 2019, 58, 6048–6052.
- 56G. L. Trammel, R. Kuniyil, P. F. Crook, P. Liu, M. K. Brown, J. Am. Chem. Soc. 2021, 143, 16502–16511.
- 57C. Cheng, J. F. Hartwig, Chem. Rev. 2015, 115, 8946–8975.
- 58A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388–405.
- 59R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779–3798.
- 60S. Wang, C. Yang, S. Sun, J. Wang, Chem. Commun. 2019, 55, 14035–14038.
- 61H. Roth, N. Romero, D. Nicewicz, Synlett 2015, 27, 714–723.
- 62V. F. Slagt, A. H. M. De Vries, J. G. De Vries, R. M. Kellogg, Org. Process Res. Dev. 2010, 14, 30–47.
- 63L. Pause, M. Robert, J.-M. Savéant, J. Am. Chem. Soc. 1999, 121, 7158–7159.
- 64S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255–263.
- 65M. Markovič, P. Koóš, T. Čarný, T. Gracza, Tetrahedron Lett. 2020, 61, 152370.
- 66W. Zhang, S. Lin, J. Am. Chem. Soc. 2020, 142, 20661–20670.
- 67L. Lu, J. C. Siu, Y. Lai, S. Lin, J. Am. Chem. Soc. 2020, 142, 21272–21278.
- 68M. C. Franke, V. R. Longley, M. Rafiee, S. S. Stahl, E. C. Hansen, D. J. Weix, ACS Catal. 2022, 12, 12617–12626.
- 69P. Li, C. Guo, S. Wang, D. Ma, T. Feng, Y. Wang, Y. Qiu, Nat. Commun. 2022, 13, 3774.
- 70X. Hu, I. Cheng-Sánchez, S. Cuesta-Galisteo, C. Nevado, J. Am. Chem. Soc. 2023, 145, 6270–6279.
- 71J. Ke, H. Wang, L. Zhou, C. Mou, J. Zhang, L. Pan, Y. R. Chi, Chem. Eur. J. 2019, 25, 6911–6914.
- 72S. Lü, Z. Wang, S. Zhu, Nat. Commun. 2022, 13, 5001.
- 73B. Michelet, C. Deldaele, S. Kajouj, C. Moucheron, G. Evano, Org. Lett. 2017, 19, 3576–3579.
- 74D. Yu, W.-P. To, Y. Liu, L.-L. Wu, T. You, J. Ling, C.-M. Che, Chem. Sci. 2021, 12, 14050–14058.
- 75Z. Cao, J. Li, G. Zhang, Nat. Commun. 2021, 12, 6404.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.