Unlocking Giant Third-Order Optical Nonlinearity in (MA)2CuX4 through Introducing Jahn-Teller Distortion
This article relates to:
-
Titelbild: Unlocking Giant Third-Order Optical Nonlinearity in (MA)2CuX4 through Introducing Jahn-Teller Distortion (Angew. Chem. 38/2024)
- Bingyue Li,
- Hui Li,
- Chao Wu,
- LuLu Fu,
- Danil W. Boukhvalov,
- Mark G. Humphrey,
- Chi Zhang,
- Zhipeng Huang,
- Volume 136Issue 38Angewandte Chemie
- First Published online: August 6, 2024
Ms. Bingyue Li
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Data curation (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Hui Li
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Methodology (supporting)
Search for more papers by this authorProf. Chao Wu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. LuLu Fu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorProf. Danil W. Boukhvalov
College of Science, Nanjing Forestry University, Nanjing 210037, P.R. China, Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia
Contribution: Methodology (supporting)
Search for more papers by this authorProf. Mark G. Humphrey
Research School of Chemistry, Australian National University, Canberra, ACT 2601 Australia
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Chi Zhang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Funding acquisition (equal), Resources (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Zhipeng Huang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Formal analysis (lead), Resources (equal), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorMs. Bingyue Li
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Data curation (lead), Investigation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Hui Li
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Methodology (supporting)
Search for more papers by this authorProf. Chao Wu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. LuLu Fu
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorProf. Danil W. Boukhvalov
College of Science, Nanjing Forestry University, Nanjing 210037, P.R. China, Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg, Russia
Contribution: Methodology (supporting)
Search for more papers by this authorProf. Mark G. Humphrey
Research School of Chemistry, Australian National University, Canberra, ACT 2601 Australia
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Chi Zhang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Funding acquisition (equal), Resources (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Zhipeng Huang
China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092 P.R. China
Contribution: Formal analysis (lead), Resources (equal), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Nonlinear absorption coefficient and modulation depth stand as pivotal properties of nonlinear optical (NLO) materials, while the existing NLO materials exhibit limitations such as low nonlinear absorption coefficients and/or small modulation depths, thereby severely impeding their practical application. Here we unveil that introducing Jahn–Teller distortion in a Mott-Hubbard system, (MA)2CuX4 (MA=methylammonium; X=Cl, Br) affords the simultaneous attainment of a giant nonlinear absorption coefficient and substantial modulation depth. The optimized compound, (MA)2CuCl4, demonstrates a nonlinear absorption coefficient of (1.5±0.08)×105 cm GW−1, a modulation depth of 60 %, and a relatively low optical limiting threshold of 1.22×10−5 J cm−2. These outstanding attributes surpass those of most reported NLO materials. Our investigation reveals that a more pronounced distortion of the [CuX6]4− octahedron emerges as a crucial factor in augmenting optical nonlinearity. Mechanism study involving structural and spectral characterization along with theoretical calculations indicates a correlation between the compelling performance and the Mott-Hubbard band structure of the materials, coupled with the Jahn–Teller distortion-induced d-d transition. This study not only introduces a promising category of high-performance NLO materials but also provides novel insights into enhancing the performance of such materials.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202406941-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Zhang, Y. L. Song, F. E. Kuhn, Y. X. Wang, X. Q. Xin, W. A. Herrmann, Adv. Mater. 2002, 14, 818.
- 2H. J. He, E. Ma, Y. J. Cui, J. C. Yu, Y. Yang, T. Song, C. D. Wu, X. Y. Chen, B. L. Chen, G. D. Qian, Nat. Commun. 2016, 7, 11087.
- 3F. Zhou, I. Abdelwahab, K. Leng, K. P. Loh, W. Ji, Adv. Mater. 2019, 31, 1904155.
- 4V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, Nature 2004, 431, 1081.
- 5Y. J. Liu, Q. H. Li, D. J. Li, X. Z. Zhang, W. H. Fang, J. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4849.
- 6J. Jeon, J. Lee, J. H. Lee, J. Opt. Soc. Am. B 2015, 32, 31.
- 7B. S. Wherrett, J. Opt. Soc. Am. B 1984, 1, 67.
- 8J. Wang, Y. Hernandez, M. Lotya, J. N. Coleman, W. J. Blau, Adv. Mater. 2009, 21, 2430.
- 9K. P. Wang, B. M. Szydlowska, G. Z. Wang, X. Y. Zhang, J. J. Wang, J. J. Magan, L. Zhang, J. N. Coleman, J. Wang, W. J. Blau, ACS Nano 2016, 10, 6923.
- 10Y. F. Xie, S. F. Zhang, Y. X. Li, N. N. Dong, X. Y. Zhang, L. Wang, W. M. Liu, I. M. Kislyakov, J. M. Nunzi, H. J. Qi, L. Zhang, J. Wang, Photonics Res. 2019, 7, 762.
- 11N. N. Dong, Y. X. Li, S. F. Zhang, N. McEyoy, R. Gatensby, G. S. Duesberg, J. Wang, ACS Photonics 2018, 5, 1558.
- 12J. Yu, X. F. Kuang, J. Z. Li, J. H. Zhong, C. Zeng, L. K. Cao, Z. W. Liu, Z. X. S. Zeng, Z. Y. Luo, T. C. He, A. L. Pan, Y. P. Liu, Nat. Commun. 2021, 12, 1083.
- 13S. F. Zhang, N. N. Dong, N. McEvoy, M. O′Brien, S. Winters, N. C. Berner, C. Yim, Y. X. Li, X. Y. Zhang, Z. H. Chen, L. Zhang, G. S. Duesberg, J. Wang, ACS Nano 2015, 9, 7142.
- 14W. W. Liu, J. Xing, J. X. Zhao, X. L. Wen, K. Wang, P. X. Lu, Q. H. Xiong, Adv. Opt. Mater. 2017, 5, 1601045.
- 15I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I. H. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, S. A. Maier, Adv. Mater. 2019, 31, 1902685.
- 16
- 16aN. Bloembergen, Phys. Rev. Lett. 1959, 2, 84;
- 16bR. Scheps, Prog. Quantum Electron. 1996, 20, 271.
- 17
- 17aM. J. Diao, H. Li, Y. H. Sun, Y. Liang, Z. Y. Yu, D. W. Boukhvalov, Z. P. Huang, C. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 4211;
- 17bM. J. Diao, H. Li, X. Y. Gao, R. P. Hou, Q. Cheng, Z. Y. Yu, Z. P. Huang, C. Zhang, Adv. Funct. Mater. 2021, 31, 2106930.
- 18
- 18aJ. Zaanen, G. A. Sawatzky, J. W. Allen, Phys. Rev. Lett. 1985, 55, 418;
- 18bN. F. MOTT, Proc. Phys. Soc. London Sect. A 1949, 62, 416;
- 18cJ. Hubbard, Proc. Roy. Soc. A-Math Phy. 1964, 277, 237.
- 19
- 19aH. L. S. G. Gliemann, London, Wiley-Interscience, 1969, 11, 162;
- 19bJ. McCleverty, Nature 1984, 138, 308.
- 20M. L. Shand, J. C. Walling, R. C. Morris, J. Appl. Phys. 1981, 52, 953.
- 21
- 21aG. Jackeli, G. Khaliullin, Phys. Rev. Lett. 2009, 102, 017205;
- 21bY. Y. Li, Y. K. Weng, X. M. Yin, X. J. Yu, S. R. S. Kumar, N. Wehbe, H. J. Wu, H. N. Alshareef, S. J. Pennycook, M. B. H. Breese, J. S. Chen, S. Dong, T. Wu, Adv. Funct. Mater. 2018, 28, 1705657;
- 21cY. Tokura, Y. Taguchi, Y. Okada, Y. Fujishima, T. Arima, K. Kumagai, Y. Iye, Phys. Rev. Lett. 1993, 70, 2126;
- 21dD. N. Basov, T. Timusk, Rev. Mod. Phys. 2005, 77, 721;
- 21eA. Ohtomo, H. Y. Hwang, Nature 2004, 427, 423;
- 21fA. Jaffe, S. A. Mack, Y. Lin, W. L. Mao, J. B. Neaton, H. I. Karunadasa, Angew. Chem. Int. Ed. 2020, 59, 4017.
- 22Deposition numbers 2324477 for (MA)2CuCl4 and 2324476 for (MA)2CuCl3.2Br0.8 contain the supplementary crystallographic data for this paper. These data are provided free of charge from the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23Z. Y. Liu, H. J. Yang, J. Y. Wang, Y. C. Yuan, K. Hills-Kimball, T. Cai, P. Wang, A. W. Tang, O. Chen, Nano Lett. 2021, 21, 1620.
- 24Z. Iqbal, H. Arend, P. Wachter, J. Phys. C Solid State Phys. 1980, 13, 4757.
- 25Y. Moritomo, Y. Yokura, J. Chem. Phys. 1994, 101, 1763–1766.
- 26M. A. Naradipa, A. Xie, Arramel, X. M. Yin, C. S. Tang, M. F. Sahdan, T. C. Asmara, C. Dang, M. D. Birowosuto, A. T. S. Wee, A. Rusydi, J. Phys. Chem. C 2020, 124, 14272.
- 27D. Cortecchia, H. A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P. P. Boix, M. Gratzel, S. Mhaisalkar, C. Soci, N. Mathews, Inorg. Chem. 2016, 55, 1044.
- 28D. Mori, K. Tanaka, H. Saitoh, T. Kikegawa, Y. Inaguma, Inorg. Chem. 2015, 54, 11405.
- 29
- 29aH. A. Jahn, E. Teller, Proc. R. Soc. London Ser. A 1937, 161, 220;
- 29bH. A. Jahn, Proc. R. Soc. London Ser. A 1938, 164, 117.
- 30
- 30aS. R. Desjardins, K. W. Penfield, S. L. Cohen, R. L. Musselman, E. I. Solomon, J. Am. Chem. Soc. 1983, 105, 4590;
- 30bA. Jaffe, Y. Lin, W. L. Mao, H. I. Karunadasa, J. Am. Chem. Soc. 2015, 137, 1673.
- 31
- 31aA. E. Maughan, A. M. Ganose, M. M. Bordelon, E. M. Miller, D. O. Scanlon, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 8453;
- 31bW. W. Meng, X. M. Wang, Z. W. Xiao, J. B. Wang, D. B. Mitzi, Y. F. Yan, J. Phys. Chem. Lett. 2017, 8, 2999.
- 32J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agrait, R. D′Agosta, A. Castellanos-Gomez, Adv. Opt. Mater. 2016, 4, 1939.
- 33J. K. Zareba, J. Szeremeta, M. Waszkielewicz, M. Nyk, M. Samoc, Inorg. Chem. 2016, 55, 9501.
- 34
- 34aH. Kishida, H. Matsuzaki, H. Okamoto, T. Manabe, M. Yamashita, Y. Taguchi, Y. Tokura, Nature 2000, 405, 929;
- 34bT. Ogasawara, M. Ashida, N. Motoyama, H. Eisaki, S. Uchida, Y. Tokura, H. Ghosh, A. Shukla, S. Mazumdar, M. Kuwata-Gonokami, Phys. Rev. Lett. 2000, 85, 2204.
- 35H. Kishida, M. Ono, A. Sawa, M. Kawasaki, Y. Tokura, H. Okamoto, Phys. Rev. B 2003, 68, 075101.
- 36G. M. Sheldrick, Acta Crystallogr. 2015, 71, 3.
- 37A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- 38R. G. J. Tauc, A. Vancu, Phys. Status Solidi 1966, 15, 627.
- 39M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, E. W. Vanstryland, IEEE J. Quantum Electron. 1990, 26, 760.
- 40D. R. Hamann, Phys. Rev. B 2017, 95, 239906.
- 41M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, G. M. Rignanese, Comput. Phys. Commun. 2018, 226, 39.
- 42
- 42aD. Sangalli, A. Ferretti, H. Miranda, C. Attaccalite, I. Marri, E. Cannuccia, P. Melo, M. Marsili, F. Paleari, A. Marrazzo, G. Prandini, P. Bonfà, M. O. Atambo, F. Affinito, M. Palummo, A. Molina-Sánchez, C. Hogan, M. Grüning, D. Varsano, A. Marini, J. Phys. Condens. Matter 2019, 31, 325902;
- 42bA. Marini, C. Hogan, M. Grüning, D. Varsano, Comput. Phys. Commun. 2009, 180, 1392.
- 43K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
- 44S. Ahmed, P. K. Cheng, J. P. Qiao, W. Gao, A. M. Saleque, M. N. A. Ivan, T. Wang, T. I. Alam, S. U. Hani, Z. L. Guo, S. F. Yu, Y. H. Tsang, ACS Nano 2022, 16, 12390.
- 45A. Maeda, M. Ono, H. Kishida, T. Manako, A. Sawa, M. Kawasaki, Y. Tokura, H. Okamoto, Phys. Rev. B 2004, 70, 125117.
- 46W. Gao, Q. Wei, T. Wang, J. T. Xu, L. Y. C. Zhuang, M. J. Li, K. Yao, S. F. Yu, ACS Nano 2022, 16, 13082.
- 47L. N. Li, X. Y. Shang, S. S. Wang, N. N. Dong, C. M. Ji, X. Y. Chen, S. E. Zhao, J. Wang, Z. H. Sun, M. C. Hong, J. H. Luo, J. Am. Chem. Soc. 2018, 140, 6806.
- 48F. Zhou, W. Ji, Opt. Lett. 2017, 42, 3113.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.