Efficient and Selective Construction of 412 Metalla-links Using Weak C−H⋅⋅⋅Halogen Interactions
Dr. Hai-Ning Zhang
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438 Shanghai, P. R. China
These authors contributed equally.
Search for more papers by this authorXi Huang
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438 Shanghai, P. R. China
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Prof. Dr. Guo-Xin Jin
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438 Shanghai, P. R. China
Search for more papers by this authorDr. Hai-Ning Zhang
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438 Shanghai, P. R. China
These authors contributed equally.
Search for more papers by this authorXi Huang
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438 Shanghai, P. R. China
These authors contributed equally.
Search for more papers by this authorCorresponding Author
Prof. Dr. Guo-Xin Jin
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, 2005 Songhu Rd, 200438 Shanghai, P. R. China
Search for more papers by this authorAbstract
Through a coordination-driven self-assembly method, four metalla-links and one tetranuclear monocycle were constructed with high selectivity and yield by adjusting the substituent species of the building blocks, as evidenced using X-ray crystallographic analysis, electrospray ionization-time-of-flight/mass spectrometry (ESI-TOF/MS), elemental analysis and detailed solution-state nuclear magnetic resonance (NMR) spectroscopy. Based on X-ray crystallographic analysis and independent gradient model analysis, a significant factor leading to the formation of metalla-links was the introduction of F, Cl, Br and I atoms, which generated additional weak C−H⋅⋅⋅X (X=F, Cl, Br and I) interactions. Furthermore, the dynamic conversion of metalla-links to monocyclic rings in methanol solution was systematically investigated using quantitative 1H NMR techniques.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202405399-sup-0001-misc_information.pdf11.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. C. Sherrington, K. A. Taskinen, Chem. Soc. Rev. 2001, 30, 83;
- 1bS. Keinan, M. A. Ratner, T. J. Marks, Chem. Phys. Lett. 2004, 392, 291.
- 2A. L. Thompson, N. G. White, Chem. Soc. Rev. 2023, 52, 6254.
- 3M. S. Taylor, E. N. Jacobsen, Angew. Chem. Int. Ed. 2006, 45, 1520.
- 4J. Reedijk, Chem. Soc. Rev. 2013, 42, 1776.
- 5R. Ferreira de Freitas, M. Schapira, MedChemComm 2017, 8, 1970.
- 6
- 6aS. K. Chang, A. D. Hamilton, J. Am. Chem. Soc. 1988, 110, 1318;
- 6bP. A. Gale, J. L. Sessler, V. Král, V. Lynch, J. Am. Chem. Soc. 1996, 118, 5140;
- 6cR. A. Tromans, T. S. Carter, L. Chabanne, M. P. Crump, H. Li, J. V. Matlock, M. G. Orchard, A. P. Davis, Nat. Chem. 2019, 11, 52;
- 6dJ. Dong, A. P. Davis, Angew. Chem. Int. Ed. 2021, 60, 8035.
- 7
- 7aC. A. Hunter, J. Am. Chem. Soc. 1992, 114, 5303;
- 7bL. R. MacGillivray, J. L. Atwood, Nature 1997, 389, 469;
- 7cF. Corbellini, R. Fiammengo, P. Timmerman, M. Crego-Calama, K. Versluis, A. J. R. Heck, I. Luyten, D. N. Reinhoudt, J. Am. Chem. Soc. 2002, 124, 6569;
- 7dF. Hu, C. Liu, M. Wu, J. Pang, F. Jiang, D. Yuan, M. Hong, Angew. Chem. Int. Ed. 2017, 56, 2101;
- 7eR.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou, B. Chen, Chem. Soc. Rev. 2019, 48, 1362.
- 8
- 8aM. Fujita, M. Tominaga, A. Hori, B. Therrien, Acc. Chem. Res. 2005, 38, 369;
- 8bN. C. Gianneschi, M. S. Masar, C. A. Mirkin, Acc. Chem. Res. 2005, 38, 825;
- 8cB. H. Northrop, Y.-R. Zheng, K.-W. Chi, P. J. Stang, Acc. Chem. Res. 2009, 42, 1554;
- 8dY.-F. Han, G.-X. Jin, Acc. Chem. Res. 2014, 47, 3571.
- 9
- 9aY.-F. Han, W.-G. Jia, W.-B. Yu, G.-X. Jin, Chem. Soc. Rev. 2009, 38, 3419;
- 9bS. De, K. Mahata, M. Schmittel, Chem. Soc. Rev. 2010, 39, 1555;
- 9cR. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810;
- 9dK. Ariga, H. Ito, J. P. Hill, H. Tsukube, Chem. Soc. Rev. 2012, 41, 5800;
- 9eM. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2013, 42, 1619;
- 9fT. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001.
- 10
- 10aG. Gil-Ramírez, D. A. Leigh, A. J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110;
- 10bS. D. P. Fielden, D. A. Leigh, S. L. Woltering, Angew. Chem. Int. Ed. 2017, 56, 11166;
- 10cW.-X. Gao, H.-J. Feng, B.-B. Guo, Y. Lu, G.-X. Jin, Chem. Rev. 2020, 120, 6288;
- 10dQ.-H. Guo, Y. Jiao, Y. Feng, J. F. Stoddart, CCS Chemistry 2021, 3, 1542;
- 10eZ. Ashbridge, S. D. P. Fielden, D. A. Leigh, L. Pirvu, F. Schaufelberger, L. Zhang, Chem. Soc. Rev. 2022, 51, 7779.
- 11
- 11aY. Inomata, T. Sawada, M. Fujita, J. Am. Chem. Soc. 2021, 143, 16734;
- 11bZ. Cui, G.-X. Jin, Nat. Synth. 2022, 1, 635;
- 11cH.-N. Zhang, H.-J. Feng, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2023, 145, 4746;
- 11dA. Baby Sainaba, M. Venkateswarulu, P. Bhandari, J. K. Clegg, P. Sarathi Mukherjee, Angew. Chem. Int. Ed. 2023, 62, e202315572;
- 11eQ.-S. Mu, X. Gao, Z. Cui, Y.-J. Lin, G.-X. Jin, Sci. China Chem. 2023, 66, 2885;
- 11fI. Regeni, R. Chowdhury, K. Terlinden, S. Horiuchi, J. J. Holstein, S. Feldmann, G. H. Clever, Angew. Chem. Int. Ed. 2023, 62, e202308288;
- 11gY. Zou, H.-N. Zhang, Q.-S. Mu, L.-L. Dang, G.-X. Jin, Chin. J. Chem. 2023, 41, 3229;
- 11hY.-W. Zhang, Y. Lu, L.-Y. Sun, P. D. Dutschke, M.-M. Gan, L. Zhang, A. Hepp, Y.-F. Han, F. E. Hahn, Angew. Chem. Int. Ed. 2023, 62, e202312323.
- 12
- 12aY. Domoto, M. Abe, T. Kikuchi, M. Fujita, Angew. Chem. Int. Ed. 2020, 59, 3450;
- 12bL.-X. Cai, D.-N. Yan, P.-M. Cheng, J.-J. Xuan, S.-C. Li, L.-P. Zhou, C.-B. Tian, Q.-F. Sun, J. Am. Chem. Soc. 2021, 143, 2016;
- 12cY. Domoto, M. Abe, M. Fujita, J. Am. Chem. Soc. 2021, 143, 8578;
- 12dY. Domoto, M. Abe, G. R. Genov, Z. Yu, M. Fujita, Angew. Chem. Int. Ed. 2023, 62, e202303714.
- 13
- 13aY. Lu, Y.-X. Deng, Y.-J. Lin, Y.-F. Han, L.-H. Weng, Z.-H. Li, G.-X. Jin, Chem 2017, 3, 110;
- 13bW.-L. Shan, Y.-J. Lin, F. E. Hahn, G.-X. Jin, Angew. Chem. Int. Ed. 2019, 58, 5882.
- 14
- 14aT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580;
- 14bC. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, E. Hénon, Phys. Chem. Chem. Phys. 2017, 19, 17928;
- 14cT. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539;
- 14dT. Lu, Q. Chen, ChemRxiv. 2022, 10.26434/chemrxiv-2022-g1m34.
- 15W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 1996, 14, 33.
- 16
- 16aW. B. Jennings, B. M. Farrell, J. F. Malone, Acc. Chem. Res. 2001, 34, 885;
- 16bJ. Pawliszyn, M. M. Szczesniak, S. Scheiner, J. Phys. Chem. C 1984, 88, 1726.
- 17
- 17aN. Giuseppone, J.-L. Schmitt, L. Allouche, J.-M. Lehn, Angew. Chem. Int. Ed. 2008, 47, 2235;
- 17bB. M. Schulze, D. L. Watkins, J. Zhang, I. Ghiviriga, R. K. Castellano, Org. Biomol. Chem. 2014, 12, 7932;
- 17cZ. Zhang, H. Wang, X. Wang, Y. Li, B. Song, O. Bolarinwa, R. A. Reese, T. Zhang, X.-Q. Wang, J. Cai, B. Xu, M. Wang, C. Liu, H.-B. Yang, X. Li, J. Am. Chem. Soc. 2017, 139, 8174.
- 18J. W. Alexander, G. B. Briggs, Ann. Math. 1926, 28, 562.
- 19Y. V. Zefirov, Russ. J. Inorg. Chem. 2000, 45, 1552.
- 20X. Zhang, F. Huo, X. Liu, K. Dong, H. He, X. Yao, S. Zhang, Ind. Eng. Chem. Res. 2015, 54, 3505.
- 21
- 21aT. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48;
- 21bG. Manfroni, A. Prescimone, E. C. Constable, C. E. Housecroft, Crystals 2021, 11, 325.
- 22Deposition Numbers 2314913 (for 1), 2314914 (for 3), 2314915 (for 4), 2314916 (for 5) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 23
- 23aM. Gantenbein, L. Wang, A. A. Al-jobory, A. K. Ismael, C. J. Lambert, W. Hong, M. R. Bryce, Sci. Rep. 2017, 7, 1794;
- 23bH.-N. Zhang, Y. Lu, W.-X. Gao, Y.-J. Lin, G.-X. Jin, Chem. Eur. J. 2018, 24, 18913.
- 24G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics 2010, 29, 2176.
- 25O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339.
- 26
- 26aG. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467;
- 26bG. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112;
- 26cG. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3.
- 27
- 27aJ. T. Edward, J. Chem. Educ. 1970, 47, 261;
- 27bA. Macchioni, G. Ciancaleoni, C. Zuccaccia, D. Zuccaccia, Chem. Soc. Rev. 2008, 37, 479;
- 27cH. C. Chen, S. H. Chen, J. Chem. Phys. 1984, 88, 5118.
- 28C. W. Lim, T. W. Kim, Chem. Lett. 2011, 41, 70.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.