Additive Manufacturing of Micro-Architected Copper based on an Ion-Exchangeable Hydrogel
Songhua Ma
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorWuxin Bai
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorDajun Xiong
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorGuibin Shan
Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Zijie Zhao
National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Wenbin Yi
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Jieping Wang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 China
Search for more papers by this authorSonghua Ma
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorWuxin Bai
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorDajun Xiong
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorGuibin Shan
Herbert Gleiter Institute of Nanoscience, School of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Zijie Zhao
National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Wenbin Yi
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
Search for more papers by this authorCorresponding Author
Jieping Wang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083 China
Search for more papers by this authorAbstract
Additive manufacturing (AM) of copper through laser-based processes poses challenges, primarily attributed to the high thermal conductivity and low laser absorptivity of copper powder or wire as the feedstock. Although the use of copper salts in vat photopolymerization-based AM techniques has garnered recent attention, achieving micro-architected copper with high conductivity and density has remained elusive. In this study, we present a facile and efficient process to create complex 3D micro-architected copper structures with superior electrical conductivity and hardness. The process entails the formulation of an ion-exchangeable photoresin, followed by the utilization of digital light processing (DLP) printing to sculpt 3D hydrogel scaffolds, which were transformed into Cu2+-chelated polymer frameworks (Cu-CPFs) with a high loading of Cu2+ ions through ion exchange, followed by debinding and sintering, results in the transformation of Cu-CPFs into miniaturized copper architectures. This methodology represents an efficient pathway for the creation of intricate micro-architected 3D metal structures.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202405135-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Marques, B. Guimarães, M. Cerqueira, F. Silva, O. Carvalho, Adv. Eng. Mater. 2022, 25, 2201349.
- 2Y. Jo, H. J. Park, Y. B. Kim, S. S. Lee, S. Y. Lee, S. K. Kim, Y. Choi, S. Jeong, Adv. Funct. Mater. 2020, 30, 2004659.
- 3F. Singer, D. Deisenroth, D. Hymas, M. Ohadi, in 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), IEEE, 2017, pp. 174–183.
- 4E. Gutierrez, P. A. Burdiles, F. Quero, P. Palma, F. Olate-Moya, H. Palza, Engineering, ACS Biomater. Sci. Eng. 2019, 5, 6290–6299.
- 5M. A. Saccone, R. A. Gallivan, K. Narita, D. W. Yee, J. R. Greer, Nature 2022, 612, 685–690.
- 6L. Constantin, Z. Wu, N. Li, L. Fan, J.-F. Silvain, Y. F. Lu, Addit. Manuf. 2020, 35, 101268.
- 7S. D. Jadhav, S. Dadbakhsh, L. Goossens, J. P. Kruth, J. Van Humbeeck, K. Vanmeensel, J. Mater. Process. Technol. 2019, 270, 47–58.
- 8W. E. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, S. A. Khairallah, A. M. Rubenchik, Appl. Phys. Rev. 2015, 2, 041304.
- 9C. Silbernagel, L. Gargalis, I. Ashcroft, R. Hague, M. Galea, P. Dickens, Addit. Manuf. 2019, 29, 100831.
- 10S. Wong Kam, M. Yan, R. Gu, Sci. China Phys. Mech. Astron. 2019, 50, 034204.
- 11H. Miyanaji, D. Ma, M. A. Atwater, K. A. Darling, V. H. Hammond, C. B. Williams, Addit. Manuf. 2020, 32, 100960.
- 12D. Li, Int. J. Adv. Manuf. Technol. 2021, 113, 1–19.
- 13C. Ledford, C. Rock, P. Carriere, P. Frigola, D. Gamzina, T. Horn, Appl. Sci. 2019, 9, 3993.
- 14J. Hu, M. F. Yu, Science 2010, 329, 313–316.
- 15C. van Nisselroy, C. Shen, T. Zambelli, D. Momotenko, Addit. Manuf. 2022, 53, 102718.
- 16A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C. M. Portela, J. R. Greer, Nat. Commun. 2018, 9, 593.
- 17M. Luitz, M. Lunzer, A. Goralczyk, M. Mader, S. Bhagwat, A. Warmbold, D. Helmer, F. Kotz, B. E. Rapp, Adv. Mater. 2021, 33, 2101992.
- 18D. W. Yee, M. L. Lifson, B. W. Edwards, J. R. Greer, Adv. Mater. 2019, 31, 1901345.
- 19I. Cooperstein, S. Indukuri, A. Bouketov, U. Levy, S. Magdassi, Adv. Mater. 2020, 32, 2001675.
- 20D. W. Yee, M. A. Citrin, Z. W. Taylor, M. A. Saccone, V. L. Tovmasyan, J. R. Greer, Adv. Mater. Technol. 2021, 6, 2000791.
- 21J. W. Halloran, Annu. Rev. Mater. Res. 2016, 46, 19–40.
- 22H. X. Nguyen, H. Suen, B. Poudel, P. Kwon, H. Chung, CIRP Ann. Manuf. Technol. 2020, 69, 177–180.
- 23J. Y. Hu, D. Jiao, X. P. Hao, X. Kong, X. N. Zhang, M. Du, Q. Zheng, Z. L. Wu, Adv. Funct. Mater. 2023, 2307402.
- 24Y. Li, C. Li, X. Zhang, Y. Wang, Y. Tan, S. Chang, Z. Chen, G. Fu, Z. Kou, A. Stefan, X. Xu, J. Ding, Appl. Mater. Today 2022, 29, 101553.
- 25I. Katime, E. Rodríguez, J. Macromol. Sci., Part A: Pure Appl. Chem. 2001, 38, 543–558.
- 26J. Wang, S. Stanic, A. A. Altun, M. Schwentenwein, K. Dietliker, L. Jin, J. Stampfl, S. Baudis, R. Liska, H. Grutzmacher, Chem. Commun. 2018, 54, 920–923.
- 27M. Caprioli, I. Roppolo, A. Chiappone, L. Larush, C. F. Pirri, S. Magdassi, Nat. Commun. 2021, 12, 2462.
- 28J. Wang, A. Chiappone, I. Roppolo, F. Shao, E. Fantino, M. Lorusso, D. Rentsch, K. Dietliker, C. F. Pirri, H. Grutzmacher, Angew. Chem. Int. Ed. 2018, 57, 2353–2356.
- 29C. Dong, H. Fan, F. Tang, X. Gao, K. Feng, J. Wang, Z. Jin, J. Mater. Chem. B 2021, 9, 373–380.
- 30S. Bansal, E. Toimil-Molares, A. Saxena, R. R. Tummala, in Proceedings Electronic Components and Technology, 2005. ECTC′05, IEEE, 2005, pp. 71–76.
- 31F. Emeis, M. Peterlechner, S. V. Divinski, G. Wilde, Acta Mater. 2018, 150, 262–272.
- 32S.-Y. Chang, T.-K. Chang, J. Appl. Phys. 2007, 101, 033507.
- 33J. Guo, M. J. Duarte, Y. Zhang, A. Bachmaier, C. Gammer, G. Dehm, R. Pippan, Z. Zhang, Acta Mater. 2019, 166, 281–293.
- 34W. Zhang, Z. Li, R. Dang, T. T. Tran, R. A. Gallivan, H. Gao, J. R. Greer, Nano Lett. 2023, 23, 8162–8170.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.