Multipolar Conjugated Polymer Framework Derived Ionic Sieves via Electronic Modulation for Long-Life All-Solid-State Li Batteries
Xue Yang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorLong Fang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorJing Li
Guangdong-Hong Kong-Macau Joint Laboratory for Photonic Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa, Macao SAR, 999078 China
Search for more papers by this authorCong Liu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorLinfeng Zhong
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorFan Yang
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478 China
Search for more papers by this authorXiaotong Wang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorProf. Zishou Zhang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Dingshan Yu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorXue Yang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorLong Fang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorJing Li
Guangdong-Hong Kong-Macau Joint Laboratory for Photonic Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau Avenida da Universidade, Taipa, Macao SAR, 999078 China
Search for more papers by this authorCong Liu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorLinfeng Zhong
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorFan Yang
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 528478 China
Search for more papers by this authorXiaotong Wang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorProf. Zishou Zhang
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorCorresponding Author
Prof. Dingshan Yu
Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006 China
Search for more papers by this authorAbstract
Here, we build a tunable multipolar conjugated polymer framework platform via pore wall chemistry to probe the role of electronic structure engineering in improving the Li+ conduction by theoretical studies. Guided by theoretical prediction, we develop a new cyano-vinylene-linked multipolar polymer framework namely CNF-COF, which can act as efficient ion sieves to modify solid polymer electrolytes to simultaneously tune Li+ migration and stable Li anodes for long-lifespan all-solid-state (ASS) Li metal batteries at high rate. The dual-decoration of cyano and fluorine groups in CNF-COF favorably regulates electronic structure via multipolar donor-acceptor electronic effects to afford proper energy band structure and abundant electron-rich sites for enhanced oxidative stability, facilitated ion-pair dissociation and suppressed anion movements. Thus, the CNF-COF incorporation into poly (ethylene oxide) (PEO) electrolytes not only renders fast selective Li+ transport but also facilitates the Li dendrite suppression. Specifically, the constructed PEO composite electrolyte with an ultra-low CNF-COF content of only 0.5 wt % is endowed with a wide electrochemical window, a high ionic conductivity of 0.634 mS cm−1 at 60 °C and a large Li+ transference number of 0.81—remarkably outperforming CNF-COF-free counterparts (0.183 mS cm−1 and 0.22). As such, the Li symmetric cell delivers stable Li plating/stripping over 1400 h at 0.1 mA cm−2. Impressively, by coupling with LiFePO4 (LFP) cathodes, the assembled ASS Li battery under 60 °C allows for stable cycling over 2000 cycles at 1 C and over 1000 cycles even at 2 C with a large capacity retention of ~75 %, surpassing most reported ASS Li batteries using PEO-based electrolytes.
Conflict of interests
The authors declare no competing interests.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202401957-sup-0001-misc_information.pdf1.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M. H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Nature 2019, 572, 511–515.
- 2J. Xiang, Y. Wei, Y. Zhong, Y. Yang, H. Cheng, L. Yuan, H. Xu, Y. Huang, Adv. Mater. 2022, 34, e2200912.
- 3G. Wang, P. He, L. Z. Fan, Adv. Funct. Mater. 2020, 31, 2007198.
- 4L.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003–1019.
- 5H. Zhang, F. Chen, J. Carrasco, Energy Storage Mater. 2021, 36, 77–90.
- 6H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.
- 7J. Li, Y. Cai, H. Wu, Z. Yu, X. Yan, Q. Zhang, T. Z. Gao, K. Liu, X. Jia, Z. Bao, Adv. Energy Mater. 2021, 11, 2003239.
- 8J. Lopez, D. G. Mackanic, Y. Cui, Z. Bao, Nat. Rev. Mater. 2019, 4, 312–330.
- 9D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem 2019, 5, 2326–2352.
- 10R. Fang, B. Xu, N. S. Grundish, Y. Xia, Y. Li, C. Lu, Y. Liu, N. Wu, J. B. Goodenough, Angew. Chem. Int. Ed. 2021, 60, 17701–17706.
- 11D. Lin, W. Liu, Y. Liu, H. R. Lee, P. C. Hsu, K. Liu, Y. Cui, Nano Lett. 2016, 16, 459–465.
- 12M. Forsyth, D. R. MacFarlane, A. Best, J. Adebahr, P. Jacobsson, A. J. Hill, Solid State Ionics 2002, 147, 203–211.
- 13X. Judez, H. Zhang, C. Li, G. G. Eshetu, Y. Zhang, J. A. Gonzalez-Marcos, M. Armand, L. M. Rodriguez-Martinez, J. Phys. Chem. Lett. 2017, 8, 3473–3477.
- 14Y. Xu, K. Wang, X. Zhang, Y. Ma, Q. Peng, Y. Gong, S. Yi, H. Guo, X. Zhang, X. Sun, H. Gao, S. Xin, Y. G. Guo, Y. Ma, Adv. Energy Mater. 2023, 13, 2204377.
- 15J. Wen, Q. Zhao, X. Jiang, G. Ji, R. Wang, G. Lu, J. Long, N. Hu, C. Xu, ACS Appl. Energy Mater. 2021, 4, 3660–3669.
- 16P. Zhai, Z. Yang, Y. Wei, X. Guo, Y. Gong, Adv. Energy Mater. 2022, 12, 2200967.
- 17Q. Han, S. Wang, Z. Jiang, X. Hu, H. Wang, ACS Appl. Mater. Interfaces 2020, 12, 20514–20521.
- 18J. Atik, D. Diddens, J. H. Thienenkamp, G. Brunklaus, M. Winter, E. Paillard, Angew. Chem. Int. Ed. 2021, 60, 11919–11927.
- 19M. Li, W. Zhu, P. Zhang, Y. Chao, Q. He, B. Yang, H. Li, A. Borisevich, S. Dai, Small 2016, 12, 3535–3542.
- 20S. Liu, J. Shen, Z. Wang, W. Tian, X. Han, Z. Chen, H. Pan, L. Wang, D. Bian, C. Yang, S. Zhu, J. Mater. Chem. A 2024, 12, 256–266.
- 21J. Xu, G. Ma, N. Wang, S. Zhao, J. Zhou, Small 2022, 18, 2204163.
- 22Y. Su, X. Rong, A. Gao, Y. Liu, J. Li, M. Mao, X. Qi, G. Chai, Q. Zhang, L. Suo, L. Gu, H. Li, X. Huang, L. Chen, B. Liu, Y. S. Hu, Nat. Commun. 2022, 13, 4181.
- 23J. Tian, J. Ji, Y. Zhu, Y. He, H. Li, Y. Li, D. Luo, J. Xing, L. Qie, J. L. Sessler, X. Chi, Adv. Mater. 2023, 2302587.
- 24J. Zhang, S. Li, X. Wang, S. Mao, J. Guo, Z. Shen, J. Mao, Q. Wu, K. Shen, H. Cheng, Y. Tan, Y. Lu, Adv. Energy Mater. 2023, 2302587.
- 25C. Li, S. Zhou, L. Dai, X. Zhou, B. Zhang, L. Chen, T. Zeng, Y. Liu, Y. Tang, J. Jiang, J. Huang, J. Mater. Chem. A 2021, 9, 24661–24669.
- 26Z. Wang, Y. Zhang, P. Zhang, D. Yan, J. Liu, Y. Chen, Q. Liu, P. Cheng, M. J. Zaworotko, Z. Zhang, eScience 2022, 2, 311–318.
- 27C. Niu, W. Luo, C. Dai, C. Yu, Y. Xu, Angew. Chem. Int. Ed. 2021, 60, 24915–24923.
- 28Y. Wang, S. Geng, G. Yan, X. Liu, X. Zhang, Y. Feng, J. Shi, X. Qu, ACS Appl. Energy Mater. 2022, 5, 2495–2504.
- 29Z. Shan, M. Wu, Y. Du, B. Xu, B. He, X. Wu, G. Zhang, Chem. Mater. 2021, 33, 5058–5066.
- 30X. Li, Q. Hou, W. Huang, H.-S. Xu, X. Wang, W. Yu, R. Li, K. Zhang, L. Wang, Z. Chen, K. Xie, K. P. Loh, ACS Energy Lett. 2020, 5, 3498–3506.
- 31Q. Xu, S. Tao, Q. Jiang, D. Jiang, Angew. Chem. Int. Ed. 2020, 59, 4557–4563.
- 32
- 32aT. W. Kang, J. H. Lee, J. Lee, J. H. Park, J. H. Shin, J. M. Ju, H. Lee, S. U. Lee, J. H. Kim, Adv. Mater. 2023, 35, 2301308;
- 32bJ.-H. Lee, H. Lee, J. Lee, T. W. Kang, J. H. Park, J.-H. Shin, H. Lee, D. Majhi, S. U. Lee, J.-H. Kim, ACS Nano 2023, 17, 17372–17382.
- 33S. Wang, X. Li, T. Cheng, Y. Liu, Q. Li, M. Bai, X. Liu, H. Geng, W.-Y. Lai, W. Huang, J. Mater. Chem. A 2022, 10, 8761–8771.
- 34F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu, J. S. Chen, F. Zhang, Angew. Chem. Int. Ed. 2021, 60, 13614–13620.
- 35S. S. A. Shah, M. S. Javed, T. Najam, M. A. Nazir, A. ur Rehman, A. Rauf, M. Sohail, F. Verpoort, S.-J. Bao, Mater. Today 2023, 67, 229–255.
- 36W. Han, L.-H. Shao, X.-J. Sun, Y.-H. Liu, F.-M. Zhang, Y. Wang, P.-Y. Dong, G.-L. Zhang, Appl. Catal. B 2022, 317, 121710.
- 37M. G. Mohamed, C.-C. Lee, A. F. M. El-Mahdy, J. Lüder, M.-H. Yu, Z. Li, Z. Zhu, C.-C. Chueh, S.-W. Kuo, J. Mater. Chem. A 2020, 8, 11448–11459.
- 38Z. Li, Z. Zhang, R. Nie, C. Li, Q. Sun, W. Shi, W. Chu, Y. Long, H. Li, X. Liu, Adv. Funct. Mater. 2022, 32, 2112553.
- 39D. Inácio, A. L. Pinto, A. B. Paninho, L. C. Branco, S. K. S. Freitas, H. Cruz, Nanomaterials 2023, 13, 1204.
- 40G. Zhang, Y.-l. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, J. Am. Chem. Soc. 2018, 141, 1227–1234.
- 41Y. Wang, K. Zhang, X. Jiang, Z. Liu, S. Bian, Y. Pan, Z. Shan, M. Wu, B. Xu, G. Zhang, ACS Appl. Energy Mater. 2021, 4, 11720–11725.
- 42C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong, Z. Fang, J. Feng, D. Yu, Adv. Sci. 2020, 7, 1902988.
- 43M. Yang, L. Fang, J. Li, Z. Yuan, D. Yu, X. Chen, Adv. Photonics Res. 2022, 3, 2200008.
- 44C. Liu, C. Mo, L. Zhong, X. Gong, Y. Zhang, X. Wang, F. Yang, J. Li, J. Lu, D. Yu, Angew. Chem. Int. Ed. 2023, 62, e202312016.
- 45C. Wu, M. Hu, X. Yan, G. Shan, J. Liu, J. Yang, Energy Storage Mater. 2021, 36, 347–354.
- 46L. Zhong, J. Li, C. Liu, L. Fang, Z. Yuan, D. Yu, X. Chen, Adv. Funct. Mater. 2023, 33, 2215133.
- 47L. Xu, X. Xiao, H. Tu, F. Zhu, J. Wang, H. Liu, W. Huang, W. Deng, H. Hou, T. Liu, X. Ji, K. Amine, G. Zou, Adv. Mater. 2023, 35, e2303193.
- 48D. J. Q. Shen, S. Cao, X. Lu, C. Mao, X. Dai, F. Chen, ACS Appl. Mater. Interfaces 2023, 15, 38759–38768.
- 49Z. Chen, J. Li, F. Qiu, C. Lu, J. Zhu, X. Zhuang, J. Mater. Chem. A 2022, 10, 14849–14856.
- 50J.-H. Lee, H. Lee, J. Lee, T. W. Kang, J. H. Park, J.-H. Shin, H. Lee, D. Majhi, S. U. Lee, J.-H. Kim, ACS Nano 2023, 17, 17372–17382.
- 51R. Dubey, J. Sastre, C. Cancellieri, F. Okur, A. Forster, L. Pompizii, A. Priebe, Y. E. Romanyuk, L. P. H. Jeurgens, M. V. Kovalenko, A. K. V. Kravchyk, Adv. Energy Mater. 2021, 11, 2102086.
- 52P. Luo, B. Zeng, W. Li, G. Zheng, K. Su, L. Liang, H. Song, L. Du, Z. Cui, Adv. Funct. Mater. 2023, 33, 2302299.
- 53Z. Zhao, X. Zhou, B. Zhang, F. Huang, Y. Wang, Z. Ma, J. Liu, Angew. Chem. Int. Ed. 2023, 62, 202308738.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.