Mechanically Adaptive Polymers Constructed from Dynamic Coordination Equilibria
Dr. Zi-Han Zhao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorShi-Yi Chen
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Pei-Chen Zhao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorWen-Lin Luo
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Yan-Long Luo
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
College of Science, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorProf. Jing-Lin Zuo
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Cheng-Hui Li
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Zi-Han Zhao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China
Search for more papers by this authorShi-Yi Chen
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Pei-Chen Zhao
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorWen-Lin Luo
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorDr. Yan-Long Luo
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
College of Science, Nanjing Forestry University, Nanjing, 210037 P. R. China
Search for more papers by this authorProf. Jing-Lin Zuo
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Cheng-Hui Li
State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 P. R. China
Search for more papers by this authorAbstract
Designing materials capable of adapting their mechanical properties in response to external stimuli is the key to preventing failure and extending their service life. However, existing mechanically adaptive polymers are hindered by limitations such as inadequate load-bearing capacity, difficulty in achieving reversible changes, high cost, and a lack of multiple responsiveness. Herein, we address these challenges using dynamic coordination bonds. A new type of mechanically adaptive material with both rate- and temperature-responsiveness was developed. Owing to the stimuli-responsiveness of the coordination equilibria, the prepared polymers, PBMBD-Fe and PBMBD-Co, exhibit mechanically adaptive properties, including temperature-sensitive strength modulation and rate-dependent impact hardening. Benefitting from the dynamic nature of the coordination bonds, the polymers exhibited impressive energy dissipation, damping capacity (loss factors of 1.15 and 2.09 at 1.0 Hz), self-healing, and 3D printing abilities, offering durable and customizable impact resistance and protective performance. The development of impact-resistant materials with comprehensive properties has potential applications in the sustainable and intelligent protection fields.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202400758-sup-0001-misc_information.pdf4.8 MB | Supporting Information |
ange202400758-sup-0001-Movie_S1.mp479.2 MB | Supporting Information |
ange202400758-sup-0001-Movie_S2.mp4131.1 MB | Supporting Information |
ange202400758-sup-0001-Movie_S3.mp499.6 MB | Supporting Information |
ange202400758-sup-0001-Movie_S4.mp422.9 MB | Supporting Information |
ange202400758-sup-0001-Movie_S5.mp485.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Xia, C. M. Spadaccini, J. R. Greer, Nat. Rev. Mater. 2022, 7, 683;
- 1bL. Hsu, C. Weder, S. J. Rowan, J. Mater. Chem. 2011, 21, 2812;
- 1cC. Lupfer, S. Seitel, O. Skarsetz, A. Walther, Angew. Chem. Int. Ed. 2023, 62, e202309236;
- 1dS. S. Banerjee, S. Hait, T. S. Natarajan, S. Wießner, K. W. Stöckelhuber, D. Jehnichen, A. Janke, D. Fischer, G. Heinrich, J. J. C. Busfield, A. Das, J. Phys. Chem. B 2019, 123, 5168;
- 1eA. Walther, Adv. Mater. 2020, 32, 1905111.
- 2M. M. Omar, B. Sun, G. Kitchen, S. H. Kang, J. Compos. Mater. 2022, 57, 575.
- 3
- 3aJ. R. Capadona, K. Shanmuganathan, D. J. Tyler, S. J. Rowan, C. Weder, Science 2008, 319, 1370;
- 3bL. Li, Q. Lin, M. Tang, E. H. R. Tsai, C. Ke, Angew. Chem. Int. Ed. 2021, 60, 10186.
- 4
- 4aZ. Wang, J. Wang, J. Ayarza, T. Steeves, Z. Hu, S. Manna, A. P. Esser-Kahn, Nat. Mater. 2021, 20, 869;
- 4bS. Orrego, Z. Chen, U. Krekora, D. Hou, S. Y. Jeon, M. Pittman, C. Montoya, Y. Chen, S. H. Kang, Adv. Mater. 2020, 32, 1906970.
- 5
- 5aS. Samanta, S. Kim, T. Saito, A. P. Sokolov, J. Phys. Chem. B 2021, 125, 9389;
- 5bS. V. Wanasinghe, O. J. Dodo, D. Konkolewicz, Angew. Chem. Int. Ed. 2022, 61, e202206938;
- 5cJ. Hatai, C. Hirschhäuser, J. Niemeyer, C. Schmuck, ACS Appl. Mater. Interfaces 2020, 12, 2107.
- 6
- 6aS. Wang, M. W. Urban, Nat. Rev. Mater. 2020, 5, 562;
- 6bY. Zhang, W. Li, P. Pan, J. Tang, B. Dong, F. Xing, G. Zhu, Composites Part B 2022, 242, 110056;
- 6cX. Chen, N. Gianneschi, D. Ginger, J.-M. Nam, H. Zhang, Adv. Mater. 2021, 33, 2107344.
- 7
- 7aN. Zheng, Y. Xu, Q. Zhao, T. Xie, Chem. Rev. 2021, 121, 1716;
- 7bS. Utrera-Barrios, R. Verdejo, M. A. López-Manchado, M. Hernández Santana, Mater. Horiz. 2020, 7, 2882;
- 7cM. M. Perera, N. Ayres, Polym. Chem. 2020, 11, 1410;
- 7dJ. M. Winne, L. Leibler, F. E. Du Prez, Polym. Chem. 2019, 10, 6091;
- 7eF. Herbst, D. Döhler, P. Michael, W. H. Binder, Macromol. Rapid Commun. 2013, 34, 203.
- 8
- 8aJ. Chen, Q. Peng, X. Peng, H. Zhang, H. Zeng, Chem. Rev. 2022, 122, 14594;
- 8bX. Ma, H. Tian, Acc. Chem. Res. 2014, 47, 1971;
- 8cX. Yan, F. Wang, B. Zheng, F. Huang, Chem. Soc. Rev. 2012, 41, 6042.
- 9
- 9aC. H. Li, J. L. Zuo, Adv. Mater. 2020, 32, e1903762;
- 9bL.-J. Chen, H.-B. Yang, Acc. Chem. Res. 2018, 51, 2699;
- 9cD. Mozhdehi, S. Ayala, O. R. Cromwell, Z. Guan, J. Am. Chem. Soc. 2014, 136, 16128.
- 10
- 10aJ.-F. Gohy, Coord. Chem. Rev. 2009, 253, 2214;
- 10bY.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, FL, USA, 2007.
10.1201/9781420007282 Google Scholar
- 11L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Macromol. Rapid Commun. 2019, 40, 1800837.
- 12
- 12aH. Xiang, X. Li, B. Wu, S. Sun, P. Wu, Adv. Mater. 2023, 35, 2209581;
- 12bX. Liang, G. Chen, I. M. Lei, P. Zhang, Z. Wang, X. Chen, M. Lu, J. Zhang, Z. Wang, T. Sun, Y. Lan, J. Liu, Adv. Mater. 2022, 35, 2207587;
- 12cW. Wang, S. Wang, J. Zhou, H. Deng, S. Sun, T. Xue, Y. Ma, X. Gong, Adv. Funct. Mater. 2023, 33, 2212093;
- 12dK. Liu, L. Cheng, N. Zhang, H. Pan, X. Fan, G. Li, Z. Zhang, D. Zhao, J. Zhao, X. Yang, Y. Wang, R. Bai, Y. Liu, Z. Liu, S. Wang, X. Gong, Z. Bao, G. Gu, W. Yu, X. Yan, J. Am. Chem. Soc. 2020, 143, 1162;
- 12eJ. F. Yin, H. Xiao, P. Xu, J. Yang, Z. Fan, Y. Ke, X. Ouyang, G. X. Liu, T. L. Sun, L. Tang, S. Z. D. Cheng, P. Yin, Angew. Chem. Int. Ed. 2021, 60, 22212;
- 12fY. Wu, Y. Wang, X. Guan, H. Zhang, R. Guo, C. Cui, D. Wu, Y. Cheng, Z. Ge, Y. Zheng, Y. Zhang, Adv. Mater. 2023, 35, 2306882;
- 12gZ. Zhang, L. Qian, J. Cheng, Q. Xie, C. Ma, G. Zhang, Chem. Mater. 2023, 35, 1806.
- 13
- 13aI. M. Henderson, R. C. Hayward, J. Mater. Chem. 2012, 22, 21366;
- 13bJ. K. Sahoo, M. A. VandenBerg, M. J. Webber, Macromol. Rapid Commun. 2019, 41, 1900565;
- 13cJ.-C. Berthet, M. Nierlich, Y. Miquel, C. Madic, M. Ephritikhine, Dalton Trans. 2005, 369.
- 14
- 14aJ. Yang, Z. Zhang, Y. Yan, S. Liu, Z. Li, Y. Wang, H. Li, ACS Appl. Mater. Interfaces 2020, 12, 13239;
- 14bZ. Jiang, T. Wu, S. Wu, J. Yuan, Z. Zhang, T.-Z. Xie, H. Liu, Y. Peng, Y. Li, S. Dong, P. Wang, Inorg. Chem. Commun. 2022, 146, 110131;
- 14cS. Bode, R. K. Bose, S. Matthes, M. Ehrhardt, A. Seifert, F. H. Schacher, R. M. Paulus, S. Stumpf, B. Sandmann, J. Vitz, A. Winter, S. Hoeppener, S. J. Garcia, S. Spange, S. van der Zwaag, M. D. Hager, U. S. Schubert, Polym. Chem. 2013, 4, 4966;
- 14dReece W. Lewis, N. Malic, K. Saito, R. A. Evans, N. R. Cameron, Chem. Sci. 2019, 10, 6174;
- 14eL. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Macromol. Rapid Commun. 2019, 40, 1800837;
- 14fD. Zhao, X. Zhou, Q. Li, J. Yang, H. Li, Mater. Horiz. 2022, 9, 2626.
- 15
- 15aH. F. Abd El-Halim, G. G. Mohamed, J. Mol. Struct. 2016, 1104, 91;
- 15bZ. Nagy, I. Fábián, A. Bényei, I. Sóvágó, J. Inorg. Biochem. 2003, 94, 291;
- 15cW. Liu, D. Zhong, C.-L. Yu, Y. Zhang, D. Wu, Y.-L. Feng, H. Cong, X. Lu, W.-B. Liu, Org. Lett. 2019, 21, 2673.
- 16
- 16aB. Li, S. Ge, S. Zhao, K. Xing, A. P. Sokolov, P.-F. Cao, T. Saito, Mater. Horiz. 2023, 10, 2868;
- 16bX. Chen, Q. Zhong, C. Cui, L. Ma, S. Liu, Q. Zhang, Y. Wu, L. An, Y. Cheng, S. Ye, X. Chen, Z. Dong, Q. Chen, Y. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 30847;
- 16cX. Liu, X. Liu, W. Li, Y. Ru, Y. Li, A. Sun, L. Wei, Chem. Eng. J. 2021, 410, 128300.
- 17
- 17aJ. Huang, Y. Xu, S. Qi, J. Zhou, W. Shi, T. Zhao, M. Liu, Nat. Commun. 2021, 12, 3610;
- 17bL. Xu, Z. Huang, Z. Deng, Z. Du, T. L. Sun, Z.-H. Guo, K. Yue, Adv. Mater. 2021, 33, 2105306;
- 17cD. Zhao, Z. Zhang, J. Zhao, K. Liu, Y. Liu, G. Li, X. Zhang, R. Bai, X. Yang, X. Yan, Angew. Chem. Int. Ed. 2021, 60, 16224;
- 17dM. O. Saed, W. Elmadih, A. Terentjev, D. Chronopoulos, D. Williamson, E. M. Terentjev, Nat. Commun. 2021, 12, 6676.
- 18
- 18aX. Zhang, K. Wu, Y. Ni, L. He, Nat. Commun. 2022, 13, 7719;
- 18bZ. Yin, F. Hannard, F. Barthelat, Science 2019, 364, 1260;
- 18cX. Wang, Z. Niu, C. Wang, F. Zhang, J. Wang, H. Zhang, X. Huang, Y. Liu, P. Wang, H. Chi, K. Xu, Y. Bai, Mater. Today Chem. 2022, 24, 100847;
- 18dJ. A. Doolan, L. S. Alesbrook, K. Baker, I. R. Brown, G. T. Williams, K. L. F. Hilton, M. Tabata, P. J. Wozniakiewicz, J. R. Hiscock, B. T. Goult, Nat. Nanotechnol. 2023, 18, 1060.
- 19
- 19aF. Tang, C. Dong, Z. Yang, Y. Kang, X. Huang, M. Li, Y. Chen, W. Cao, C. Huang, Y. Guo, Y. Wei, Compos. Sci. Technol. 2022, 218, 109190;
- 19bJ. N. Fowler, A. A. Pallanta, C. B. Swanik, N. J. Wagner, J. Biomech. Eng. 2015, 137, 054504.
- 20
- 20aR. L. Truby, J. A. Lewis, Nature 2016, 540, 371;
- 20bM. Su, Y. Song, Chem. Rev. 2021, 122, 5144;
- 20cL. Y. Zhou, J. Fu, Y. He, Adv. Funct. Mater. 2020, 30, 2000187.
- 21
- 21aH. Yuk, B. Lu, S. Lin, K. Qu, J. Xu, J. Luo, X. Zhao, Nat. Commun. 2020, 11, 1604;
- 21bC. B. Highley, C. B. Rodell, J. A. Burdick, Adv. Mater. 2015, 27, 5075;
- 21cK. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv. Mater. 2016, 28, 2587.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.