Simple Functionalization of a Donor Monomer to Enhance Charge Transfer in Porous Polymer Networks for Photocatalytic Hydrogen Evolution
Jiwon Kim
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorJong-Pil Jeon
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorYoung Hyun Kim
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorNguyen Thi Dieu Anh
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorProf. Dr. Kunook Chung
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Dr. Jeong-Min Seo
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Jong-Beom Baek
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorJiwon Kim
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorJong-Pil Jeon
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorYoung Hyun Kim
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorNguyen Thi Dieu Anh
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorProf. Dr. Kunook Chung
Department of Physics, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Dr. Jeong-Min Seo
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Jong-Beom Baek
Department of Energy and Chemical Engineering/ Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919 Republic of Korea
Search for more papers by this authorAbstract
Porous polymer networks (PPNs) are promising candidates as photocatalysts for hydrogen production. Constructing a donor-acceptor structure is known to be an effective approach for improving photocatalytic activity. However, the process of how a functional group of a monomer can ensure photoexcited charges transfer and improve the hydrogen evolution rate (HER) has not yet been studied on the molecular level. Herein, we design and synthesize two kinds of triazatruxene (TAT)-based PPNs: TATR-PPN with a hexyl (R) group and TAT-PPN without the hexyl group, to understand the relationship between the presence of the functional group and charge transfer. The hexyl group on the TAT unit was found to ensure the transfer of photoexcited electrons from a donor unit to an acceptor unit and endowed the TATR-PPN with stable hydrogen production.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202319395-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Bai, L. Wilbraham, H. Gao, R. Clowes, H. Yang, M. A. Zwijnenburg, A. I. Cooper, R. S. Sprick, J. Mater. Chem. A 2021, 9, 19958–19964;
- 1bR. S. Sprick, Y. Bai, A. A. Y. Guilbert, M. Zbiri, C. M. Aitchison, L. Wilbraham, Y. Yan, D. J. Woods, M. A. Zwijnenburg, A. I. Cooper, Chem. Mater. 2019, 31, 305–313;
- 1cL. Wang, Y. Wan, Y. Ding, Y. Niu, Y. Xiong, X. Wu, H. Xu, Nanoscale 2017, 9, 4090–4096;
- 1dZ. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang, Chem. Commun. 2014, 50, 8177–8180;
- 1eZ. J. Wang, S. Ghasimi, K. Landfester, K. A. I. Zhang, J. Mater. Chem. A 2014, 2, 18720–18724;
- 1fY. Xie, T.-T. Wang, X.-H. Liu, K. Zou, W.-Q. Deng, Nat. Commun. 2013, 4, 1960;
- 1gA. Li, H.-X. Sun, D.-Z. Tan, W.-J. Fan, S.-H. Wen, X.-J. Qing, G.-X. Li, S.-Y. Li, W.-Q. Deng, Energy Environ. Sci. 2011, 4, 2062–2065;
- 1hG. Lu, H. Yang, Y. Zhu, T. Huggins, Z. J. Ren, Z. Liu, W. Zhang, J. Mater. Chem. A 2015, 3, 4954–4959;
- 1iL. Sun, Z. Liang, J. Yu, R. Xu, Polym. Chem. 2013, 4, 1932–1938;
- 1jL. Wang, Y. Wan, Y. Ding, S. Wu, Y. Zhang, X. Zhang, G. Zhang, Y. Xiong, X. Wu, J. Yang, H. Xu, Adv. Mater. 2017, 29, 1702428;
- 1kZ. J. Wang, K. Landfester, K. A. I. Zhang, Polym. Chem. 2014, 5, 3559–3562;
- 1lK. Zhang, D. Kopetzki, P. H. Seeberger, M. Antonietti, F. Vilela, Angew. Chem. Int. Ed. 2013, 52, 1432–1436.
- 2
- 2aX. Fan, L. Zhang, R. Cheng, M. Wang, M. Li, Y. Zhou, J. Shi, ACS Catal. 2015, 5, 5008–5015;
- 2bK. Kailasam, M. B. Mesch, L. Möhlmann, M. Baar, S. Blechert, M. Schwarze, M. Schröder, R. Schomäcker, J. Senker, A. Thomas, Energy Technol. 2016, 4, 744–750;
- 2cY. S. Kochergin, D. Schwarz, A. Acharjya, A. Ichangi, R. Kulkarni, P. Eliášová, J. Vacek, J. Schmidt, A. Thomas, M. J. Bojdys, Angew. Chem. Int. Ed. 2018, 57, 14188–14192;
- 2dJ.-l. Wang, G. Ouyang, D. Wang, J. Li, J. Yao, W.-S. Li, H. Li, Macromolecules 2021, 54, 2661–2666;
- 2eR. S. Sprick, B. Bonillo, M. Sachs, R. Clowes, J. R. Durrant, D. J. Adams, A. I. Cooper, Chem. Commun. 2016, 52, 10008–10011;
- 2fB. Muktha, G. Madras, T. N. Guru Row, U. Scherf, S. Patil, J. Phys. Chem. B 2007, 111, 7994–7998;
- 2gC. Schwarz, H. Bässler, I. Bauer, J.-M. Koenen, E. Preis, U. Scherf, A. Köhler, Adv. Mater. 2012, 24, 922–925;
- 2hC. Schwarz, S. Tscheuschner, J. Frisch, S. Winkler, N. Koch, H. Bässler, A. Köhler, Phys. Rev. B 2013, 87, 155205;
- 2iY. Bai, Z. Hu, J.-X. Jiang, F. Huang, Chem. Asian J. 2020, 15, 1780–1790;
- 2jR. Li, C. Zhang, C.-X. Cui, Y. Hou, H. Niu, C.-H. Tan, X. Yang, F. Huang, J.-X. Jiang, Y. Zhang, Polymer 2022, 240, 124509;
- 2kK. Lin, Z. Wang, Z. Hu, P. Luo, X. Yang, X. Zhang, M. Rafiq, F. Huang, Y. Cao, J. Mater. Chem. A 2019, 7, 19087–19093;
- 2lD. J. Woods, S. A. J. Hillman, D. Pearce, L. Wilbraham, L. Q. Flagg, W. Duffy, I. McCulloch, J. R. Durrant, A. A. Y. Guilbert, M. A. Zwijnenburg, R. S. Sprick, J. Nelson, A. I. Cooper, Energy Environ. Sci. 2020, 13, 1843–1855.
- 3S. Ghosh, A. Nakada, M. A. Springer, T. Kawaguchi, K. Suzuki, H. Kaji, I. Baburin, A. Kuc, T. Heine, H. Suzuki, R. Abe, S. Seki, J. Am. Chem. Soc. 2020, 142, 9752–9762.
- 4C. Han, S. Xiang, S. Jin, C. Zhang, J.-X. Jiang, ACS Catal. 2023, 13, 204–212.
- 5R. S. Sprick, B. Bonillo, R. Clowes, P. Guiglion, N. J. Brownbill, B. J. Slater, F. Blanc, M. A. Zwijnenburg, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2016, 55, 1792–1796.
- 6
- 6aM. Reig, J. Puigdollers, D. Velasco, J. Mater. Chem. C 2015, 3, 506–513;
- 6bX.-C. Li, C.-Y. Wang, W.-Y. Lai, W. Huang, J. Mater. Chem. C 2016, 4, 10574–10587.
- 7
- 7aF. Gallego-Gómez, E. M. García-Frutos, J. M. Villalvilla, J. A. Quintana, E. Gutierrez-Puebla, A. Monge, M. A. Díaz-García, B. Gómez-Lor, Adv. Funct. Mater. 2011, 21, 738–745;
- 7bB. Gómez-Lor, G. Hennrich, B. Alonso, A. Monge, E. Gutierrez-Puebla, A. M. Echavarren, Angew. Chem. Int. Ed. 2006, 45, 4491–4494;
- 7cX. Qian, Y.-Z. Zhu, J. Song, X.-P. Gao, J.-Y. Zheng, Org. Lett. 2013, 15, 6034–6037.
- 8M. U. Khan, J. Iqbal, M. Khalid, R. Hussain, A. A. C. Braga, M. Hussain, S. Muhammad, RSC Adv. 2019, 9, 26402–26418.
- 9M. K. Smith, B. H. Northrop, Chem. Mater. 2014, 26, 3781–3795.
- 10P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 2018, 9, 6814–6817.
- 11A. Kudo, Y. Miseki, Chem. Soc. Rev. 2009, 38, 253–278.
- 12
- 12aW.-Y. Huang, Z.-Q. Shen, J.-Z. Cheng, L.-L. Liu, K. Yang, X. Chen, H.-R. Wen, S.-Y. Liu, J. Mater. Chem. A 2019, 7, 24222–24230;
- 12bM. Sachs, R. S. Sprick, D. Pearce, S. A. J. Hillman, A. Monti, A. A. Y. Guilbert, N. J. Brownbill, S. Dimitrov, X. Shi, F. Blanc, M. A. Zwijnenburg, J. Nelson, J. R. Durrant, A. I. Cooper, Nat. Commun. 2018, 9, 4968.
- 13M. Unger, B. Harnacke, I. Noda, H. W. Siesler, Appl. Spectrosc. 2011, 65, 892–900.
- 14
- 14aJ. Muzart, Tetrahedron 2009, 65, 8313–8323;
- 14bL. Ginnari-Satriani, V. Casagrande, A. Bianco, G. Ortaggi, M. Franceschin, Org. Biomol. Chem. 2009, 7, 2513–2516.
- 15J.-P. Jeon, Y. J. Kim, S. H. Joo, H.-J. Noh, S. K. Kwak, J.-B. Baek, Angew. Chem. Int. Ed. 2023, 62, e202217416.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.