Binary Atomic Sites Enable a Confined Bidirectional Tandem Electrocatalytic Sulfur Conversion for Low-Temperature All-Solid-State Na−S Batteries
Weiwei Zhang
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 China
School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, Shandong, 273165 China
These authors contributed equally to this work.
Search for more papers by this authorMingli Wang
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 China
Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hong Zhang
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorXianglong Huang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorBoyuan Shen
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Bin Song
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorLin Fu
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorCorresponding Author
Ke Lu
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 China
Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026 China
Search for more papers by this authorWeiwei Zhang
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 China
School of Chemistry and Chemical Engineering, Qufu Normal University Qufu, Shandong, 273165 China
These authors contributed equally to this work.
Search for more papers by this authorMingli Wang
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 China
Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Hong Zhang
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorXianglong Huang
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054 China
Search for more papers by this authorBoyuan Shen
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Bin Song
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorLin Fu
School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, Guizhou, 550025 China
Search for more papers by this authorCorresponding Author
Ke Lu
Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 China
Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui, 230026 China
Search for more papers by this authorAbstract
The broader implementation of current all-solid-state Na−S batteries is still plagued by high operation temperature and inefficient sulfur utilization. And the uncontrollable sulfur speciation pathway along with the sluggish polysulfide redox kinetics further compromise the theoretical potentials of Na−S chemistry. Herein, we report a confined bidirectional tandem electrocatalysis effect to tune polysulfide electrochemistry in a novel low-temperature (80 °C) all-solid-state Na−S battery that utilizes Na3Zr2Si2PO12 ceramic membrane as a platform. The bifunctional hollow sulfur matrix consisting binary atomically dispersed MnN4 and CoN4 hotspots was fabricated using a sacrificial template process. Upon discharge, CoN4 sites activate sulfur species and catalyze long-chain to short-chain polysulfides reduction, while MnN4 centers substantially accelerate the low-kinetic Na2S4 to Na2S directly conversion, manipulating the uniform deposition of electroactive Na2S and avoiding the formation of irreversible products (e.g., Na2S2). The intrinsic synergy of two catalytic centers benefits the Na2S decomposition and minimizes its activation barrier during battery recharging and then efficiently mitigate the cathodic passivation. As a result, the stable cycling of all-solid-state Na−S cell delivers an attractive reversible capacity of 1060 mAh g−1 with a high CE of 98.5 % and a high energy of 1008 Wh kgcathode−1, comparable to the liquid electrolyte cells.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202317776-sup-0001-misc_information.pdf915 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Jin, B. Wang, J. Wang, Y. Wang, Y. Ning, J. Yang, Z. Zhang, P. Liu, Y. Zhou, D. Wang, Matter 2021, 4, 1768–1800;
- 1bX. Lu, B. W. Kirby, W. Xu, G. Li, J. Y. Kim, J. P. Lemmon, V. L. Sprenkle, Z. Yang, Energy Environ. Sci. 2013, 6, 299–306;
- 1cJ. Ma, M. Wang, H. Zhang, Z. Shang, L. Fu, W. Zhang, B. Song, K. Lu, Adv. Funct. Mater. 2023, 33, 2214430;
- 1dJ. He, A. Bhargav, L. Su, H. Charalambous, A. Manthiram, Nat. Commun. 2023, 14, 6568.
- 2
- 2aS. Chen, J. W. van Nieuwkasteele, A. van den Berg, J. C. Eijkel, Anal. Chem. 2016, 88, 7890–7893;
- 2bJ. Yue, F. Han, X. Fan, X. Zhu, Z. Ma, J. Yang, C. Wang, ACS Nano 2017, 11, 4885–4891;
- 2cK. Lu, B. Li, X. Zhan, F. Xia, O. J. Dahunsi, S. Gao, D. M. Reed, V. L. Sprenkle, G. Li, Y. Cheng, Nano Lett. 2020, 20, 6837–6844.
- 3
- 3aN. Tanibata, M. Deguchi, A. Hayashi, M. Tatsumisago, Chem. Mater. 2017, 29, 5232–5238;
- 3bX. Fan, J. Yue, F. Han, J. Chen, T. Deng, X. Zhou, S. Hou, C. Wang, ACS Nano 2018, 12, 3360–3368;
- 3cL.-J. Jhang, D. Wang, A. Silver, X. Li, D. Reed, D. Wang, Nano Energy 2023, 105, 107995.
- 4
- 4aB. Guo, W. Du, T. Yang, J. Deng, D. Liu, Y. Qi, J. Jiang, S. J. Bao, M. Xu, Adv. Sci. 2020, 7, 1902617;
- 4bN. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang, Z. Xu, Y. Ding, X. Xu, Y. Du, S. Dou, Energy Environ. Sci. 2020, 13, 562–570;
- 4cS. Zhang, Y. Yao, Y. Yu, ACS Energy Lett. 2021, 6, 529–536.
- 5
- 5aZ. Yang, R. Xiao, X. Zhang, X. Wang, D. Zhang, Z. Sun, F. Li, E. Energy Environ. Mater. 2022, 5, 693–710;
- 5bC. Wu, Y. Lei, L. Simonelli, D. Tonti, A. Black, X. Lu, W. H. Lai, X. Cai, Y. Wang, Q. Gu, Adv. Mater. 2022, 34, 2108363;
- 5cZ. Li, C. Wang, F. Ling, L. Wang, R. Bai, Y. Shao, Q. Chen, H. Yuan, Y. Yu, Y. Tan, Adv. Mater. 2022, 34, 2204214.
- 6L. Wang, T. Wang, L. Peng, Y. Wang, M. Zhang, J. Zhou, M. Chen, J. Cao, H. Fei, X. Duan, Natl. Sci. Rev. 2022, 9, nwab050.
- 7A. K. Haridas, C. J. M. T. E. Huang, Mater. Today Energy 2023, 32, 101228.
- 8
- 8aQ. Pang, A. Shyamsunder, B. Narayanan, C. Y. Kwok, L. A. Curtiss, L. F. Nazar, Nat. Energy 2018, 3, 783–791;
- 8bD. Fang, T. Ghosh, S. Huang, Y. Wang, J. Qiu, X. Xu, H. Y. Yang, Small 2023, 19, 2302461;
- 8cY. Jiang, Z. Yu, X. Zhou, X. Cheng, H. Huang, F. Liu, Y. Yang, S. He, H. Pan, H. Yang, Adv. Mater. 2023, 35, 2208873;
- 8dL. Zeng, J. Zhu, P. K. Chu, L. Huang, J. Wang, G. Zhou, X. F. Yu, Adv. Mater. 2022, 34, 2204636.
- 9B. W. Zhang, T. Sheng, Y. X. Wang, S. Chou, K. Davey, S. X. Dou, S. Z. Qiao, Angew. Chem. Int. Ed. 2019, 58, 1484–1488.
- 10R. Okuyama, H. Nakashima, T. Sano, E. Nomura, J. Power Sources 2001, 93, 50–54.
- 11X. L. Huang, X. Zhang, L. Zhou, Z. Guo, H. K. Liu, S. X. Dou, Z. Wang, Adv. Sci. 2023, 10, 2206558.
- 12C. Ye, Y. Jiao, D. Chao, T. Ling, J. Shan, B. Zhang, Q. Gu, K. Davey, H. Wang, S. Z. Qiao, Adv. Mater. 2020, 32, 1907557.
- 13W. Bao, R. Wang, C. Qian, Z. Zhang, R. Wu, Y. Zhang, F. Liu, J. Li, G. Wang, ACS Nano 2021, 15, 16207–16217.
- 14Z. Huang, B. Song, H. Zhang, F. Feng, W. Zhang, K. Lu, Q. Chen, Adv. Funct. Mater. 2021, 31, 2100666.
- 15
- 15aE. Zhang, X. Hu, L. Meng, M. Qiu, J. Chen, Y. Liu, G. Liu, Z. Zhuang, X. Zheng, L. J. Zheng, J. Am. Chem. Soc. 2022, 144, 18995–19007;
- 15bW. H. Lai, H. Wang, L. Zheng, Q. Jiang, Z. C. Yan, L. Wang, H. Yoshikawa, D. Matsumura, Q. Sun, Y. X. Wang, Angew. Chem. Int. Ed. 2020, 59, 22171.
- 16
- 16aH. Zhang, B. Song, W. Zhang, B. An, L. Fu, S. Lu, Y. Cheng, Q. Chen, K. Lu, Angew. Chem. Int. Ed. 2023, 62, e202217009;
- 16bX. Sun, Y. Qiu, B. Jiang, Z. Chen, C. Zhao, H. Zhou, L. Yang, L. Fan, Y. Zhang, N. Zhang, Nat. Commun. 2023, 14, 291.
- 17
- 17aZ. Shang, B. Song, H. Li, H. Zhang, F. Feng, J. Kaelin, W. Zhang, B. Xie, Y. Cheng, K. Lu, CCS Chem. 2022, 4, 2115–2126;
- 17bJ. Zhang, Y. Shi, Y. Ding, W. Zhang, G. Yu, Nano Lett. 2016, 16, 7276–7281.
- 18J. Li, M. Chen, D. A. Cullen, S. Hwang, M. Wang, B. Li, K. Liu, S. Karakalos, M. Lucero, H. Zhang, Nat. Catal. 2018, 1, 935–945.
- 19Z.-L. Yu, S. Xin, Y. You, L. Yu, Y. Lin, D.-W. Xu, C. Qiao, Z.-H. Huang, N. Yang, S.-H. Yu, J. Am. Chem. Soc. 2016, 138, 14915–14922.
- 20Z. Qiao, S. Hwang, X. Li, C. Wang, W. Samarakoon, S. Karakalos, D. Li, M. Chen, Y. He, M. Wang, Z. Liu, G. Wang, H, Zhou, Z. Feng, D. Su, J. S. Spendelow, G. Wu, Energy Environ. Sci. 2019, 12, 2830–2841.
- 21X. X. Wang, D. A. Cullen, Y. T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Adv. Mater. 2018, 30, 1706758.
- 22Z. Jiang, X. Liu, X.-Z. Liu, S. Huang, Y. Liu, Z.-C. Yao, Y. Zhang, Q.-H. Zhang, L. Gu, L.-R. Zheng, Nat. Commun. 2023, 14, 1822.
- 23F. Xiao, H. Wang, J. Xu, W. Yang, X. Yang, D. Y. Yu, A. L. Rogach, Adv. Energy Mater. 2021, 11, 2100989.
- 24G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z. W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D. S. Wu, Q. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.
- 25J. Xu, Y. Qiu, J. Yang, H. Li, P. Han, Y. Jin, H. Liu, B. Sun, G. Wang, Adv. Funct. Mater. 2023, 2306206.
- 26R. Meng, Q. Du, N. Zhong, X. Zhou, S. Liu, S. Yin, X. Liang, Adv. Energy Mater. 2021, 11, 2102819.
- 27
- 27aK. Hiraoka, M. Kato, T. Kobayashi, S. Seki, J. Phys. Chem. C 2020, 124, 21948–21956;
- 27bZ. Yang, B. Tang, Z. Xie, Z. Zhou, ChemElectroChem 2021, 8, 1035–1047.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.