Asymmetric Ruthenium-Catalyzed C−H Activation by a Versatile Chiral-Amide-Directing Strategy
Wenkun Chen
School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006 Guangzhou, P. R. China
Search for more papers by this authorJijun Jiang
School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Wang
School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006 Guangzhou, P. R. China
Search for more papers by this authorWenkun Chen
School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006 Guangzhou, P. R. China
Search for more papers by this authorJijun Jiang
School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006 Guangzhou, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun Wang
School of Chemistry, Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, 510006 Guangzhou, P. R. China
Search for more papers by this authorAbstract
A versatile and readily available chiral amide directing group has been developed for the ruthenium(II)-catalyzed asymmetric C−H activation. Asymmetric C−H activation of the related chiral benzamides with various olefins, aldehydes and propargylic alcohols has been accomplished with high stereoselectivities, affording a series of chiral products including 3,4-dihydroisocoumarins (up to 96 % ee), isocoumarins (up to 92 % ee), phthalides (up to 99 % ee), chiral bicyclo[2.2.1]heptanes (>20 : 1 dr), 4-alkylidene-3,4-dihydroisocoumarins (up to 97 % ee) and allenes (>20 : 1 dr). Importantly, our methodologies enabled concise syntheses of many biologically active compounds and natural products (e.g., Montroumarin, Cyclosporone E, Cyclosporone Q, Concentricolide, Chuangxinol, and Eleutherol).
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316741-sup-0001-misc_information.pdf11.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC.-X. Liu, S.-Y. Yin, F. Zhao, H. Yang, Z. Feng, Q. Gu, S.-L. You, Chem. Rev. 2023, DOI: 10.1021/acs.chemrev.3c00149;
- 1bQ. Zhang, L.-S. Wu, B.-F. Shi, Chem 2022, 8, 384;
- 1cB. Liu, A. M. Romine, C. Z. Rubel, K. M. Engle, B.-F. Shi, Chem. Rev. 2021, 121, 14957;
- 1dŁ. Woźniak, N. Cramer, Trends Chem. 2019, 1, 471;
- 1eJ. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann, Angew. Chem. Int. Ed. 2019, 58, 12803;
- 1fG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514;
- 1gT. G. Saint-Denis, R.-Y. Zhu, G. Chen, Q.-F. Wu, J.-Q. Yu, Science 2018, 359, eaao4798;
- 1hC. G. Newton, S.-G. Wang, C. C. Oliveira, N. Cramer, Chem. Rev. 2017, 117, 8908.
- 2
- 2aB.-B. Zhan, L. Jin, B.-F. Shi, Trends Chem. 2022, 4, 220;
- 2bK. Yang, M. Song, H. Liu, H. Ge, Chem. Sci. 2020, 11, 12616;
- 2cQ. Shao, K. Wu, Z. Zhuang, S. Qian, J.-Q. Yu, Acc. Chem. Res. 2020, 53, 833.
- 3
- 3aJ. Mas-Roselló, A. G. Herraiz, B. Audic, A. Laverny, N. Cramer, Angew. Chem. Int. Ed. 2021, 60, 13198;
- 3bT. Yoshino, S. Satake, S. Matsunaga, Chem. Eur. J. 2020, 26, 7346.
- 4
- 4aH. Liang, J. Wang, Chem. Eur. J. 2022, 28, e202202461;
- 4bR. Kaur, N. Jain, Chem. Asian J. 2022, 17, e202200944.
- 5
- 5aP. Purohit, Curr. Org. Chem. 2023, 27, 55;
- 5bM. Pal, P. Purohit, P. Upadhyay, Lett. Org. Chem. 2022, 19, 520;
- 5cK. S. Singh, Catalysts 2019, 9, 173;
- 5dC. Shan, L. Zhu, L. B. Qu, R. Bai, Y. Lan, Chem. Soc. Rev. 2018, 47, 7552;
- 5eP. Nareddy, F. Jordan, M. Szostak, ACS Catal. 2017, 7, 5721;
- 5fJ. A. Leitch, C. G. Frost, Chem. Soc. Rev. 2017, 46, 7145;
- 5gS. De Sarkar, W. Liu, S. I. Kozhushkov, L. Ackermann, Adv. Synth. Catal. 2014, 356, 1461;
- 5hL. Ackermann, Acc. Chem. Res. 2014, 47, 281–295;
- 5iP. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879.
- 6S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano, Y. Inoue, Org. Lett. 2001, 3, 2579.
- 7
- 7aZ. Y. Li, H. H. C. Lakmal, X. Qian, Z. Zhu, B. Donnadieu, S. J. McClain, X. Xu, X. Cui, J. Am. Chem. Soc. 2019, 141, 15730;
- 7bG. Li, Q. Liu, L. Vasamsetty, W. Guo, J. Wang, Angew. Chem. Int. Ed. 2020, 59, 3475.
- 8S. Sau, K. Mukherjee, K. Kondalarao, V. Gandon, A. K. Sahoo, Org. Lett. 2023, 25, 7667.
- 9
- 9aY. Li, Y. C. Liou, J. C. A. Oliveira, L. Ackermann, Angew. Chem. Int. Ed. 2022, 61, e202212595;
- 9bU. Dhawa, R. Connon, J. C. A. Oliveira, R. Steinbock, L. Ackermann, Org. Lett. 2021, 23, 2760.
- 10
- 10aP. F. Qian, T. Zhou, J. Y. Li, Y. B. Zhou, B. F. Shi, ACS Catal. 2022, 12, 13876;
- 10bT. Zhou, P. F. Qian, J. Y. Li, Y. B. Zhou, H. C. Li, H. Y. Chen, B. F. Shi, J. Am. Chem. Soc. 2021, 143, 6810.
- 11
- 11aL. T. Huang, Y. Kitakawa, K. Yamada, F. Kamiyama, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2023, e202305480;
- 11bL.-T. Huang, Y. Hirata, Y. Kato, L. Lin, M. Kojima, T. Yoshino, S. Matsunaga, Synthesis 2022, 54, 4703.
- 12H. Liang, W. Guo, J. Li, J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2022, 61, e202204926.
- 13D. H. Dethe, N. C. Beeralingappa, S. A. Siddiqui, P. N. Chavan, J. Org. Chem. 2022, 87, 4617.
- 14F. Colobert, J. Wencel-Delord, Synlett 2015, 26, 2644.
- 15A. Ortiz, M. Castro, E. Sansinenea, Curr. Org. Synth. 2019, 16, 112.
- 16
- 16aW. Li, T. Wagener, L. Hellmann, C. G. Daniliuc, C. Muck-Lichtenfeld, J. Neugebauer, F. Glorius, J. Am. Chem. Soc. 2020, 142, 7100;
- 16bB. Qu, R. Tan, M. R. Herling, N. Haddad, N. Grinberg, M. C. Kozlowski, X. Zhang, C. H. Senanayake, J. Org. Chem. 2019, 84, 4915;
- 16cW. Li, M. P. Wiesenfeldt, F. Glorius, J. Am. Chem. Soc. 2017, 139, 2585;
- 16dE. M. Woerly, S. M. Banik, E. N. Jacobsen, J. Am. Chem. Soc. 2016, 138, 13858;
- 16eB. Parhi, S. Maity, P. Ghorai, Org. Lett. 2016, 18, 5220;
- 16fY. Suzuki, T. Seki, S. Tanaka, M. Kitamura, J. Am. Chem. Soc. 2015, 137, 9539;
- 16gC. Cornaggia, F. Manoni, E. Torrente, S. Tallon, S. J. Connon, Org. Lett. 2012, 14, 1850;
- 16hM. Fujita, Y. Yoshida, K. Miyata, A. Wakisaka, T. Sugimura, Angew. Chem. Int. Ed. 2010, 49, 7068.
- 17
- 17aY. Sun, G. Zhang, Chin. J. Chem. 2018, 36, 708;
- 17bT. T. Nguyen, L. Grigorjeva, O. Daugulis, Angew. Chem. Int. Ed. 2018, 57, 1688;
- 17cG. Cheng, T. J. Li, J. Q. Yu, J. Am. Chem. Soc. 2015, 137, 10950.
- 18S. Xu, K. Takamatsu, K. Hirano, M. Miura, Angew. Chem. Int. Ed. 2018, 57, 11797.
- 19
- 19aD. Mandal, S. Roychowdhury, J. P. Biswas, S. Maiti, D. Maiti, Chem. Soc. Rev. 2022, 51, 7358;
- 19bT. P. Aldhous, R. W. M. Chung, A. G. Dalling, J. F. Bower, Synthesis 2021, 53, 2961;
- 19cZ. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333.
- 20C. Ito, Y. Mishina, M. Litaudon, J.-P. Cosson, H. Furukawa, Phytochemistry 2000, 53, 1043.
- 21A. Saeed, Z. Naturforsch. C 2003, 58, 691.
- 22K. Rhese, G. Mattern, W. Kehr, G. Paschelke, Arch. Pharm. 1979, 312, 982.
- 23
- 23aX. Wei, Y. Zeng, C. Sun, F. Meng, Y. Wang, Fitoterapia 2022, 160, 105223;
- 23bB. C. Sadikogullari, P. Senel, N. Cini, A. Al Faysal, M. Odabasoglu, A. D. Ozdemir, A. Golcu, ChemistrySelect 2022, 7, e202202004.
- 24
- 24aA. Awasthi, M. Singh, G. Rathee, R. Chandra, RSC Adv. 2020, 10, 12626;
- 24bR. Karmakar, P. Pahari, D. Mal, Chem. Rev. 2014, 114, 6213.
- 25
- 25aX. Yang, R. Sun, Adv. Synth. Catal. 2023, 365, 124;
- 25bL. Yang, X. Liang, Y. Ding, X. Li, X. Li, Q. Zeng, Chem. Rec. 2023, 23, e202300173;
- 25cT. Gong, Z. Chen, M. Liu, J. Cheng, Chin. J. Org. Chem. 2022, 42, 1085;
- 25dQ. Li, L. Jiang, R. Bai, Y. Han, Z. Li, Chin. J. Org. Chem. 2021, 41, 3390.
- 26
- 26aC. Zhou, J. Zhao, W. Chen, M. Imerhasan, J. Wang, Eur. J. Org. Chem. 2020, 6485;
- 26bB. Jia, Y. Yang, X. Jin, G. Mao, C. Wang, Org. Lett. 2019, 21, 6259;
- 26cH. Miura, S. Terajima, T. Shishido, ACS Catal. 2018, 8, 6246;
- 26dJ. Fan, P.-M. Wang, J.-N. Wang, X. Zhao, Z.-W. Liu, J.-F. Wei, X.-Y. Shi, Sci. China Chem. 2018, 61, 153;
- 26eP. W. Tan, N. A. Juwaini, J. Seayad, Org. Lett. 2013, 15, 5166;
- 26fX. Shi, C.-J. Li, Adv. Synth. Catal. 2012, 354, 2933;
- 26gY. Lian, R. G. Bergman, J. A. Ellman, Chem. Sci. 2012, 3, 3088.
- 27B. Ye, N. Cramer, Synlett 2015, 26, 1490.
- 28G. Li, J. Jiang, H. Xie, J. Wang, Chem. Eur. J. 2019, 25, 4688.
- 29W. Chen, J. Li, H. Xie, J. Wang, Org. Lett. 2020, 22, 3586.
- 30
- 30aX.-K. Xia, H.-R. Huang, Z.-G. She, J.-W. Cai, L. Lan, J.-Y. Zhang, L.-W. Fu, L. L. P. Vrijmoed, Y.-C. Lin, Helv. Chim. Acta 2007, 90, 1925;
- 30bJ. Fuska, D. Uhrin, B. Proksa, Z. Voticky, J. Ruppeldt, J. Antibiot. 1986, 39, 1605.
- 31
- 31aS. V. Kumbhar, C. Chen, RSC Adv. 2018, 8, 41355;
- 31bJ. D. Hall, N. W. Duncan-Gould, N. A. Siddiqi, J. N. Kelly, L. A. Hoeferlin, S. J. Morrison, J. K. Wyatt, Bioorg. Med. Chem. 2005, 13, 1409;
- 31cT. Ohzeki, K. Mori, Biosci. Biotechnol. Biochem. 2003, 67, 2584;
- 31dS. F. Brady, M. M. S. Wagenaar, M. P. J. E. Janso, J. Clardy, Org. Lett. 2000, 2, 4043.
- 32L. M. Abreu, R. K. Phipps, L. H. Pfenning, C. H. Gotfredsen, J. A. Takahashi, T. O. Larsen, Tetrahedron Lett. 2010, 51, 1803.
- 33E. L. Mullady, W. P. Millett, H. Yoo, A. S. Weiskopf, J. Chen, D. DiTullio, V. Knight-Connoni, E. Hughes, W. E. Pierceall, J. Nat. Prod. 2004, 67, 2086.
- 34A. N. Romanov, V. B. Sulimov, M. B. Gottikh, A. A. Bogolyubov, O. A. Kondakova, M. A. Smolov, D. N. Nosik, N. N. Nosik, RU2359955, 2009.
- 35
- 35aJ. Du, C. Chen, X. Mao, Y. Wu, X. Yang, B. Li, M. Shi, X. Kuang, X. Li, WO2018014834, 2018;
- 35bC. Chen, J. Du, M. Shi, Y. Wu, X. Mao, N. Sang, P. Wang, CN106432161, 2017.
- 36
- 36aY. Ge, Z. Han, Z. Wang, C.-G. Feng, Q. Zhao, G.-Q. Lin, K. Ding, Angew. Chem. Int. Ed. 2018, 57, 13140;
- 36bM. M. Martínez, M. G. Onega, M. Fe Tellado, J. A. Seijas, M. P. Vazquez-Tato, Tetrahedron 1997, 53, 14127;
- 36cY. Ogawa, K. Hosaka, M. Chin, H. Mitsuhashi, Heterocycles 1989, 29, 865.
- 37
- 37aL. Fang, Q. Lyu, C. Lu, H. Li, S. Liu, L. Han, Adv. Synth. Catal. 2016, 358, 3196;
- 37bX. Liu, L. Hu, L. Jiang, J. Jia, D. Zhang, X. Chen, Eur. J. Org. Chem. 2015, 2291;
- 37cC. W. Chang, R. J. Chein, J. Org. Chem. 2011, 76, 4154.
- 38H. Schmid, T. M. Meijer, A. Ebnother, Helv. Chim. Acta 1950, 33, 595.
- 39
- 39aD. I. A. Othman, K. Otsuka, S. Takahashi, K. B. Selim, M. A. El-Sayed, A. S. Tantawy, T. Okauchi, M. Kitamura, Synlett 2018, 29, 457;
- 39bA. Sieglitz, P. Boehme, C. Jordanides, Chem. Ber. 1965, 98, 3988;
- 39cR. G. Haber, A. Ebnother, H. Schmid, Helv. Chim. Acta 1956, 39, 1529.
- 40F. Wang, Z. Qi, J. Sun, X. Zhang, X. Li, Org. Lett. 2013, 15, 6290.
- 41L. Huang, A. Biafora, G. Zhang, V. Bragoni, L. J. Gooßen, Angew. Chem. Int. Ed. 2016, 55, 6933.
- 42
- 42aR. Mao, Y. Zhao, X. Zhu, F. Wang, W. Q. Deng, X. Li, Org. Lett. 2021, 23, 7038;
- 42bS. Wu, X. Huang, C. Fu, S. Ma, Org. Chem. Front. 2017, 4, 2002;
- 42cM. Sen, P. Dahiya, J. R. Premkumar, B. Sundararaju, Org. Lett. 2017, 19, 3699.
- 43Deposition numbers 2313647 (for 5 c), 2305481 (for 7 e), 2305482 (for Ru-A), 2305483 (for 24 a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.