Design of Chiral β-Double Helices from γ-Peptide Foldamers
Saikat Pahan
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorDr. Sanjit Dey
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorDr. Gijo George
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorSouvik Panda Mahapatra
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorDr. DRGKoppalu R. Puneeth Kumar
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorCorresponding Author
Prof. Hosahudya. N. Gopi
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorSaikat Pahan
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorDr. Sanjit Dey
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorDr. Gijo George
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorSouvik Panda Mahapatra
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorDr. DRGKoppalu R. Puneeth Kumar
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorCorresponding Author
Prof. Hosahudya. N. Gopi
Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008 India
Search for more papers by this authorAbstract
Chirality is ubiquitous in nature, and homochirality is manifested in many biomolecules. Although β-double helices are rare in peptides and proteins, they consist of alternating L- and D-amino acids. No peptide double helices with homochiral amino acids have been observed. Here, we report chiral β-double helices constructed from γ-peptides consisting of alternating achiral (E)-α,β-unsaturated 4,4-dimethyl γ-amino acids and chiral (E)-α,β-unsaturated γ-amino acids in both single crystals and in solution. The two independent strands of the same peptide intertwine to form a β-double helix structure, and it is stabilized by inter-strand hydrogen bonds. The peptides with chiral (E)-α,β-unsaturated γ-amino acids derived from α-L-amino acids adopt a (P)-β-double helix, whereas peptides consisting of (E)-α,β-unsaturated γ-amino acids derived from α-D-amino acids adopt an (M)-β-double helix conformation. The circular dichroism (CD) signature of the (P) and (M)-β-double helices and the stability of these peptides at higher temperatures were examined. Furthermore, ion transport studies suggested that these peptides transport ions across membranes. Even though the structural analogy suggests that these new β-double helices are structurally different from those of the α-peptide β-double helices, they retain ion transport activity. The results reported here may open new avenues in the design of functional foldamers.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202316309-sup-0001-misc_information.pdf7.4 MB | Supporting Information |
ange202316309-sup-0001-P1.cif3.1 MB | Supporting Information |
ange202316309-sup-0001-P3.cif6.5 MB | Supporting Information |
ange202316309-sup-0001-P4.cif3.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. D. Watson, F. C. H. Crick, Nature 1953, 171, 737–738;
- 1bB. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, W. W. Norton & Company, 2007;
- 1cW. Saenger, Principles of Nucleic Acid Structure, Springer-Verlag, New York, 1984.
- 2
- 2aD. A. Langs, Science 1988, 241, 188–191;
- 2bD. W. Urry, J. D. Glickson, D. F. Mayers, J. Haider, Biochemistry 1972, 11, 487–493;
- 2cB. A. Wallace, K. Ravikumar, Science 1988, 241, 182–187;
- 2dB. Wallace, J. Struct. Biol. 1998, 121, 123–141.
- 3
- 3aL. Vertesy, W. Aretz, M. Knauf, A. Markus, M. Vogel, J. J. Wink, J. Antibiot. 1999, 52, 374–382;
- 3bG. Bunkóczi, L. Vértesy, G. M. Sheldrick, Angew. Chem. Int. Ed. 2005, 44, 1340–1342;
- 3cF. Dettner, A. Hänchen, D. Schols, L. Toti, A. Nußer, R. D. Süssmuth, Angew. Chem. Int. Ed. 2009, 48, 1856–1861;
- 3dS. Rausch, A. Hänchen, A. Denisiuk, M. Löhken, T. Schneider, R. D. Süssmuth, ChemBioChem 2011, 12, 1171–1173;
- 3eS. Fuse, Y. Mifune, H. Nakamura, H. Tanaka, Nat. Commun. 2016, 7, 13491.
- 4
- 4aZ. Zhang, S. M. Pascal, T. A. Cross, Biochemistry 1992, 31, 8822–8828;
- 4bA. S. Arsemev, I. L. Barsukov, V. F. Bystrov, FEBS Lett. 1985, 180, 33–39;
- 4cB. Roux, R. Bruschweiler, R. R. Ernst, Eur. J. Biochem. 1990, 194, 57–60;
- 4dS. M. Pascal, T. A. Cross, J. Biomol. NMR 1993, 3, 495–513;
- 4eD. A. Langs, Biopolymers 1989, 28, 259–266;
- 4fG. A. Woolley, B. A. Wallace, J. Membr. Biol. 1992, 129, 109–136;
- 4gR. R. Ketchem, W. Hu, T. A. Cross, Science 1993, 261, 1457–1460;
- 4hF. Kovacs, J. Quine, T. A. Cross, Proc. Natl. Acad. Sci. USA 1999, 96, 7910–7915;
- 4iS. V. Sychev, L. I. Barsukov, V. T. Ivanov, J. Pept. Sci. 2013, 19, 452–458;
- 4jS. V. Sychev, L. I. Barsukov, V. T. Ivanov, Eur. Biophys. J. 1993, 22, 279–288.
- 5
- 5aE. Benedetti, B. Di Blasio, C. Pedone, G. P. Lorenzi, L. Tomasic, V. Gramlich, Nature 1979, 282, 630;
- 5bB. Di Blasio, E. Benedetti, V. Pavone, C. Pedone, C. Gerber, G. P. Lorenzi, Biopolymers 1989, 28, 203–214;
- 5cJ. L. Kulp, T. D. Clark, Chem. Eur. J. 2009, 15, 11867–11877;
- 5dE. Navarro, E. Fenude, B. Celda, Biopolymers 2004, 73, 229–241;
- 5eM. Sastry, C. Brown, G. Wagner, T. D. Clark, J. Am. Chem. Soc. 2006, 128, 10650–10651;
- 5fP. Schramm, H.-J. Hofmann, J. Pept. Sci. 2010, 16, 276–283;
- 5gK. B. Jadhav, R. J. Lichtenecker, A. Bullach, B. Mandal, H.-D. Arndt, Chem. Eur. J. 2015, 21, 5898–5908;
- 5hR. J. Lichtenecker, B. Ellinger, H.-M. Han, K. B. Jadhav, S. Baumann, O. Makarewicz, M. Grabenbauer, H.-D. Arndt, ChemBioChem 2013, 14, 2492–2499.
- 6
- 6aV. Berl, I. Huc, R. G. Khoury, M. J. Krische, J.-M. Lehn, Nature 2000, 407, 720–723;
- 6bQ. Gan, X. Wang, B. Kauffmann, F. Rosu, Y. Ferrand, I. Huc, Nat. Nanotechnol. 2017, 12, 447–452;
- 6cX. Wang, B. Wicher, Y. Ferrand, I. Huc, J. Am. Chem. Soc. 2017, 139, 9350–9358;
- 6dX. Li, N. Markandeya, G. Jonusauskas, N. D. McClenaghan, V. Maurizot, S. A. Denisov, I. Huc, J. Am. Chem. Soc. 2016, 138, 13568–13578;
- 6eS. A. Denisov, Q. Gan, X. Wang, L. Scarpantonio, Y. Ferrand, B. Kauffmann, G. Jonusauskas, I. Huc, N. D. McClenaghan, Angew. Chem. Int. Ed. 2016, 55, 1328–1333;
- 6fJ. Shang, Q. Gan, S. J. Dawson, F. Rosu, H. Jiang, Y. Ferrand, I. Huc, Org. Lett. 2014, 16, 4992–4995;
- 6gV. Maurizot, M. J. Léger, P. Guionneau, I. Huc, Russ. Chem. Bull. Int. Ed. 2004, 53, 1572–1576;
- 6hC. Zhan, J.-M. Léger, I. Huc, Angew. Chem. Int. Ed. 2006, 45, 4625–4628;
- 6iD. Haldar, H. Jiang, J.-M. Léger, I. Huc, Angew. Chem. Int. Ed. 2006, 45, 5483–5486.
- 7
- 7aE. Yashima, K. Maeda, Y. Furusho, Acc. Chem. Res. 2008, 41, 1166–1180;
- 7bU. Koert, M. M. Harding, J.-M. Lehn, Nature 1990, 346, 339–342;
- 7cG. J. Gabriel, B. L. Iverson, J. Am. Chem. Soc. 2002, 124, 15174–15175;
- 7dR. S. Lokey, B. L. Iverson, Nature 1995, 375, 303–305;
- 7eB. A. Ikkanda, B. L. Iverson, Chem. Commun. 2016, 52, 7752–7759;
- 7fY. Tanaka, H. Katagiri, Y. Furusho, E. Yashima, Angew. Chem. Int. Ed. 2005, 44, 3867–3870;
- 7gE. Yashima, N. Ousaka, D. Taura, K. Shimomura, T. Ikai, K. Maeda, Chem. Rev. 2016, 116, 13752–13990;
- 7hJ. Wang, F. Meersman, R. Esnouf, M. Froeyen, R. Busson, K. Heremans, P. Herdewijn, Helv. Chim. Acta 2001, 84, 2398–2408;
- 7iY. Wang, Y. He, Z. Yu, J. Gao, S. ten Brinck, C. Slebodnick, G. B. Fahs, C. J. Zanelotti, M. Hegde, R. B. Moore, B. Ensing, T. J. Dingemans, R. Qiao, L. A. Madsen, Nat. Commun. 2019, 10, 801;
- 7jY. Hu, S. J. Teat, W. Gong, Z. Zhou, Y. Jin, H. Chen, J. Wu, Y. Cui, T. Jiang, X. Cheng, W. Zhang, Nat. Chem. 2021, 13, 660–665;
- 7kC. Liu, S. Koppireddi, H. Wang, D. Zhang, Z. Li, Angew. Chem. Int. Ed. 2019, 58, 226–230.
- 8R. Misra, S. Dey, R. M. Reja, H. N. Gopi, Angew. Chem. Int. Ed. 2018, 57, 1057–1061.
- 9S. M. Mali, A. Bandyopadhyay, S. V. Jadhav, M. Ganesh Kumar, H. N. Gopi, Org. Biomol. Chem. 2011, 9, 6566–6574.
- 10
- 10aN. Sreerama, S. Yu Venyaminov, R. W. Woody, Anal. Biochem. 2001, 299, 271–274;
- 10bA. J. Adler, N. J. Greenfield, G. D. Fasman, Methods Enzymol. 1973, 27, 675–735;
- 10cS. Beychok, Science 1966, 154, 1288–1299;
- 10dJ. G. Lees, A. J. Miles, F. Wien, B. A. Wallace, Bioinformatics 2006, 22, 1955–1962;
- 10eC. Chothia, J. Mol. Biol. 1973, 75, 295–302;
- 10fL. Whitmore, B. Woollett, A. J. Miles, D. P. Klose, R. W. Janes, B. A. Wallace, Nucleic Acids Res. 2011, 39, D480-D486;
- 10gB. Woollett, L. Whitmore, R. W. Janes, B. A. Wallace, Nucleic Acids Res. 2013, 41, W417–W421;
- 10hN. J. Greenfield, Nat. Protoc. 2007, 1, 2876–2890;
- 10iG. Holzwarth, P. Doty, J. Am. Chem. Soc. 1965, 87, 218–228;
- 10jA. Micsonai, F. Wien, L. Kernya, Y. H. Lee, Y. Goto, M. Réfrégiers, J. Kardos, Proc. Natl. Acad. Sci. USA 2015, 112, 3095–3103;
- 10kN. Sreerama, S. Y. U. Venyaminov, R. W. Woody, Protein Sci. 2008, 8, 370–380;
10.1110/ps.8.2.370 Google Scholar
- 10lE. M. Brown, M. L. Groves, FEBS Lett. 1985, 184, 36–39.
- 11E. S. Stevens, N. Sugawara, G. M. Bonora, C. Toniolo, J. Am. Chem. Soc. 1980, 102, 7048–7050.
- 12R. Misra, A. Saseendran, G. George, K. Veeresh, K. M. P. Raja, S. Raghothama, H.-J. Hofmann, H. N. Gopi, Chem. Eur. J. 2017, 23, 3764–3772.
- 13
- 13aT. W. Allen, O. S. Andersen, B. Roux, Proc. Natl. Acad. Sci. USA 2004, 101, 117–122;
- 13bE. Diamanti, E. Gutiérrez-Pineda, N. Politakos, P. Andreozzi, M. J. Rodriguez-Presa, W. Knoll, O. Azzaroni, C. A. Gervasi, S. E. Moya, Soft Matter 2017, 13, 8922–8929;
- 13cS. Chattopadhyay, S. Rawat, D. V. Greathouse, D. A. Kelkar, R. E. Koeppe, Biophys. J. 2008, 95, 166–175;
- 13dD. Sun, S. He, W. F. D. Bennett, C. L. Bilodeau, O. S. Andersen, F. C. Lightstone, H. I. Ingólfsson, J. Chem. Theory Comput. 2021, 17, 7–12;
- 13eD. A. Kelkar, A. Chattopadhyay, Biochim. Biophys. Acta Biomembr. 2007, 1768, 2011–2025;
- 13fA. H. Beaven, A. J. Sodt, R. W. Pastor, R. E. Koeppe, O. S. Andersen, W. Im, J. Chem. Theory Comput. 2017, 13, 5054–5064;
- 13gA. H. Beaven, A. M. Maer, A. J. Sodt, H. Rui, R. W. Pastor, O. S. Andersen, W. Im, Biophys. J. 2017, 112, 1185–1197;
- 13hG. V. Miloshevsky, P. C. Jordan, Biophys. J. 2004, 86, 92–104;
- 13iP. Stevenson, A. Tokmakoff, Proc. Natl. Acad. Sci. USA 2017, 114, 10840–10845;
- 13jJ. A. Lundbaek, O. S. Andersen, Biophys. J. 1999, 76, 889–895.
- 14
- 14aS. Qi, C. Zhang, H. Yu, J. Zhang, T. Yan, Z. Lin, B. Yang, Z. Dong, J. Am. Chem. Soc. 2021, 143, 3284–3288;
- 14bC. Lang, W. Li, Z. Dong, X. Zhang, F. Yang, B. Yang, X. Deng, C. Zhang, J. Xu, J. Liu, Angew. Chem. Int. Ed. 2016, 55, 9723–9727;
- 14cS. Zheng, L. Huang, Z. Sun, M. Barboiu, Angew. Chem. Int. Ed. 2021, 60, 566–597;
- 14dP. Xin, H. Kong, Y. Sun, L. Zhao, H. Fang, H. Zhu, T. Jiang, J. Guo, Q. Zhang, W. Dong, C. Chen, Angew. Chem. Int. Ed. 2019, 58, 2779–2784;
- 14eD. Bai, T. Yan, S. Wang, Y. Wang, J. Fu, X. Fang, J. Zhu, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 13602–13607.
- 15
- 15aS. Dutta, B. Watson, S. Mattoo, J.-C. Rochet, Bio-Protoc. 2020, 10, e3690;
- 15bE. Biron, F. Otis, J.-C. Meillon, M. Robitaille, J. Lamothe, P. Van Hove, M.-E. Cormier, N. Voyer, Bioorg. Med. Chem. 2004, 12, 1279–1290;
- 15cF. Otis, M. Auger, N. Voyer, Acc. Chem. Res. 2013, 46, 2934–2943.
- 16Deposition numbers 2284152 (for P1), 2289536 (for P3), and 2289535 (for P4) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.