Volume 136, Issue 1 e202315861
Zuschrift

Prediction of Early Atherosclerotic Plaques Using a Sequence-Activated Fluorescence Probe for the Simultaneous Detection of γ-Glutamyl Transpeptidase and Hypobromous Acid

Dr. Hui Wang

Dr. Hui Wang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

These authors contributed equally to this work.

Search for more papers by this author
Xiaoting Zhang

Xiaoting Zhang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

These authors contributed equally to this work.

Search for more papers by this author
Prof. Ping Li

Corresponding Author

Prof. Ping Li

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

Search for more papers by this author
Fang Huang

Fang Huang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

Search for more papers by this author
Tiancong Xiu

Tiancong Xiu

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

Search for more papers by this author
HongTong Wang

HongTong Wang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

Search for more papers by this author
Dr. Wei Zhang

Dr. Wei Zhang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

Search for more papers by this author
Dr. Wen Zhang

Dr. Wen Zhang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

Search for more papers by this author
Prof. Bo Tang

Corresponding Author

Prof. Bo Tang

College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014 Shandong, P. R. China

People's Republic of China; Laoshan Laboratory, 168 Wenhai Middle Rd, Aoshanwei Jimo, Qingdao, 266237 Shandong, P. R. China

Search for more papers by this author
First published: 20 November 2023
Citations: 4

Abstract

Atherosclerosis is a lipoprotein-driven disease, and there is no effective therapy to reverse atherosclerosis or existing plaques. Therefore, it is urgently necessary to create a noninvasive and reliable approach for early atherosclerosis detection to prevent initial plaque formation. Atherosclerosis is intimately associated with inflammation, which is accompanied by an excess of reactive oxygen species (ROS), leading to cells requiring more glutathione (GSH) to resist severe oxidative stress. Therefore, the GSH-hydrolyzed protein γ-glutamyl transpeptidase (GGT) and the ROS-hypobromous acid (HBrO) are potential biomarkers for predicting atherogenesis. Hence, to avoid false-positive diagnoses caused by a single biomarker, we constructed an ingenious sequence-activated double-locked TP fluorescent probe, C-HBrO-GGT, in which two sequential triggers of GGT and HBrO are meticulously designed to ensure that the probe fluoresces in response to HBrO only after GGT hydrolyzes the probe. By utilization of C-HBrO-GGT, the voltage-gated chloride channel (CLC-1)-HBrO-catalase (CAT)-GGT signaling pathway was confirmed in cellular level. Notably, the forthcoming atherosclerotic plaques were successfully predicted before the plaques could be observed via the naked eye or classical immunofluorescent staining. Collectively, this research proposed a powerful tool to indicate the precise position of mature plaques and provide early warning of atherosclerotic plaques.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.