Click-Chemistry-Mediated Cell Membrane Glycopolymer Engineering to Potentiate Dendritic Cell Vaccines
He Yang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorZijian Xiong
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorXingyu Heng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorXiaomeng Niu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorYichen Wang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorLihua Yao
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lele Sun
Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhuang Liu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hong Chen
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorHe Yang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorZijian Xiong
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorXingyu Heng
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorXiaomeng Niu
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorYichen Wang
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorLihua Yao
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Lele Sun
Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhuang Liu
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Lab Carbon Based Functional Materials and Devices, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hong Chen
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 Jiangsu, China
Search for more papers by this authorAbstract
Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315782-sup-0001-misc_information.pdf1.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. L. Sabado, S. Balan, N. Bhardwaj, Cell Res. 2017, 27, 74–95;
- 1bY. Wang, Y. Xiang, V. W. Xin, X.-W. Wang, X.-C. Peng, X.-Q. Liu, D. Wang, N. Li, J.-T. Cheng, Y.-N. Lyv, S.-Z. Cui, Z. Ma, Q. Zhang, H.-W. Xin, J. Hematol. Oncol. 2020, 13, 107.
- 2
- 2aM. Saxena, S. Balan, V. Roudko, N. Bhardwaj, Nat. Biomed. Eng. 2018, 2, 341–346;
- 2bW. Huo, X. Yang, B. Wang, L. Cao, Z. Fang, Z. Li, H. Liu, X. J. Liang, J. Zhang, Y. Jin, Biomaterials 2022, 288, 121722;
- 2cA. Harari, M. Graciotti, M. Bassani-Sternberg, L. E. Kandalaft, Nat. Rev. Drug Discovery 2020, 19, 635–652;
- 2dC. Zhang, Z. Zeng, D. Cui, S. He, Y. Jiang, J. Li, J. Huang, K. Pu, Nat. Commun. 2021, 12, 2934;
- 2eS. He, J. Yu, M. Xu, C. Zhang, C. Xu, P. Cheng, K. Pu, Angew. Chem. Int. Ed. 2023, 62, e202310178.
- 3
- 3aS. Anguille, E. L. Smits, E. Lion, V. F. van Tendeloo, Z. N. Berneman, Lancet Oncol. 2014, 15, e257–267;
- 3bJ. Constantino, C. Gomes, A. Falcao, M. T. Cruz, B. M. Neves, Transl. Res. 2016, 168, 74–95;
- 3cA. D. Garg, P. G. Coulie, B. J. Van den Eynde, P. Agostinis, Trends Immunol. 2017, 38, 577–593;
- 3dH. Dong, Q. Li, Y. Zhang, M. Ding, Z. Teng, Y. Mou, Adv. Sci. 2023, 10, e2301339.
- 4
- 4aJ. E. Smith-Garvin, G. A. Koretzky, M. S. Jordan, Annu. Rev. Immunol. 2009, 27, 591–619;
- 4bH. Yang, L. Sun, R. Chen, Z. Xiong, W. Yu, Z. Liu, H. Chen, Biomaterials 2023, 296, 122048.
- 5
- 5aK. Birkholz, M. Schwenkert, C. Kellner, S. Gross, G. Fey, B. Schuler-Thurner, G. Schuler, N. Schaft, J. Dörrie, Blood 2010, 116, 2277–2285;
- 5bM. V. Dhodapkar, M. Sznol, B. Zhao, D. Wang, R. D. Carvajal, M. L. Keohan, E. Chuang, R. E. Sanborn, J. Lutzky, J. Powderly, H. Kluger, S. Tejwani, J. Green, V. Ramakrishna, A. Crocker, L. Vitale, M. Yellin, T. Davis, T. Keler, Sci. Transl. Med. 2014, 6, 232ra251;
- 5cJ. Xu, J. Lv, Q. Zhuang, Z. Yang, Z. Cao, L. Xu, P. Pei, C. Wang, H. Wu, Z. Dong, Y. Chao, C. Wang, K. Yang, R. Peng, Y. Cheng, Z. Liu, Nat. Nanotechnol. 2020, 15, 1043–1052;
- 5dE. L. Dane, A. Belessiotis-Richards, C. Backlund, J. Wang, K. Hidaka, L. E. Milling, S. Bhagchandani, M. B. Melo, S. Wu, N. Li, N. Donahue, K. Ni, L. Ma, M. Okaniwa, M. M. Stevens, A. Alexander-Katz, D. J. Irvine, Nat. Mater. 2022, 21, 710–720;
- 5eM. L. Bookstaver, Q. Zeng, R. S. Oakes, S. M. Kapnick, V. Saxena, C. Edwards, N. Venkataraman, S. K. Black, X. Zeng, E. Froimchuk, T. Gebhardt, J. S. Bromberg, C. M. Jewell, Adv. Sci. 2023, 10, 2202393;
- 5fX. Zhang, B. Yang, Q. Ni, X. Chen, Chem. Soc. Rev. 2023, 52, 2886–2910.
- 6E. Garcia, S. Ismail, Int. J. Mol. Sci. 2020, 21, 3283.
- 7
- 7aL. Zhu, R. Feng, G. Chen, C. Wang, Z. Liu, Z. Zhang, H. Chen, ACS Appl. Mater. Interfaces 2022, 14, 4921–4930;
- 7bC. Y. Lo, A. Antonopoulos, A. Dell, S. M. Haslam, T. Lee, S. Neelamegham, Biomaterials 2013, 34, 8213–8222;
- 7cD. Sarkar, P. K. Vemula, W. Zhao, A. Gupta, R. Karnik, J. M. Karp, Biomaterials 2010, 31, 5266–5274;
- 7dL. Yu, R. Feng, L. Zhu, Q. Hao, J. Chu, Y. Gu, Y. Luo, Z. Zhang, G. Chen, H. Chen, Sci. Adv. 2020, 6, eabb6595.
- 8Q. Liu, S. Jiang, B. Liu, Y. Yu, Z.-A. Zhao, C. Wang, Z. Liu, G. Chen, H. Chen, ACS Macro Lett. 2019, 8, 337–344.
- 9
- 9aC. A. Hoelzel, X. Zhang, ChemBioChem 2020, 21, 1935–1946;
- 9bX. Tang, P. Zhao, X. Wen, C. Lin, J. Controlled Release 2015, 213, e17-e18;
- 9cJ. Wang, K.-F. Ren, Y.-F. Gao, H. Zhang, W.-P. Huang, H.-L. Qian, Z.-K. Xu, J. Ji, ACS Appl. Bio Mater. 2019, 2, 2676–2684;
- 9dH. Tang, J. Wang, L. Yu, S. Zhang, H. Yang, X. Li, J. L. Brash, L. Wang, H. Chen, ACS Appl. Mater. Interfaces 2021, 13, 12594–12602.
- 10
- 10aC. Agatemor, M. J. Buettner, R. Ariss, K. Muthiah, C. T. Saeui, K. J. Yarema, Nat. Chem. Rev. 2019, 3, 605–620;
- 10bN. Gong, X. Han, L. Xue, R. El-Mayta, A. E. Metzloff, M. M. Billingsley, A. G. Hamilton, M. J. Mitchell, Nat. Mater. 2023, https://doi.org/10.1038/s41563–023–01646–6;
10.1038/s41563–023–01646–6 Google Scholar
- 10cH. Wang, M. C. Sobral, D. K. Y. Zhang, A. N. Cartwright, A. W. Li, M. O. Dellacherie, C. M. Tringides, S. T. Koshy, K. W. Wucherpfennig, D. J. Mooney, Nat. Mater. 2020, 19, 1244–1252;
- 10dM. Hao, S. Hou, W. Li, K. Li, L. Xue, Q. Hu, L. Zhu, Y. Chen, H. Sun, C. Ju, C. Zhang, Sci. Transl. Med. 2020, 12, eaaz6667.
- 11
- 11aD. Wu, K. Yang, Z. Zhang, Y. Feng, L. Rao, X. Chen, G. Yu, Chem. Soc. Rev. 2022, 51, 1336–1376;
- 11bH. Yang, L. Yao, Y. Wang, G. Chen, H. Chen, Chem. Sci. 2023, 14, 13325–13345.
- 12J. Nam, S. Son, K. S. Park, J. J. Moon, Adv. Sci. 2021, 8, 2002577.
- 13S. R. S. Ting, E. H. Min, P. B. Zetterlund, M. H. Stenzel, Macromolecules 2010, 43, 5211–5221.
- 14M. Diehn, A. A. Alizadeh, O. J. Rando, C. L. Liu, K. Stankunas, D. Botstein, G. R. Crabtree, P. O. Brown, Proc. Nat. Acad. Sci. 2002, 99, 11796–11801.
- 15
- 15aC. Pan, L. Wang, M. Zhang, J. Li, J. Liu, J. Liu, J. Am. Chem. Soc. 2023, 145, 13261–13272;
- 15bH. Jiang, R. Liu, L. Wang, X. Wang, M. Zhang, S. Lin, Z. Cao, F. Wu, Y. Liu, J. Liu, Adv. Mater. 2023, 35, 2208157.
- 16
- 16aJ. Han, R. Bhatta, Y. Liu, Y. Bo, A. Elosegui-Artola, H. Wang, Nat. Commun. 2023, 14, 5049;
- 16bX. Heng, R. Feng, L. Zhu, L. Yu, G. Chen, H. Chen, Chin. Chem. Lett. 2022, 33, 4331–4334.
- 17
- 17aA. Ara, K. A. Ahmed, J. Xiang, Cell. Mol. Immunol. 2018, 15, 986–988;
- 17bE. J. Hindmarsh, M. A. Staykova, D. O. Willenborg, C. R. Parish, Immunol. Cell Biol. 2001, 79, 436–443.
- 18E. Vivier, N. Anfossi, Nat. Rev. Immunol. 2004, 4, 190–198.
- 19E. Pyż, A. S. J. Marshall, S. Gordon, G. D. Brown, Ann. Med. 2006, 38, 242–251.
- 20P. R. Crocker, J. C. Paulson, A. Varki, Nat. Rev. Immunol. 2007, 7, 255–266.
- 21
- 21aM. J. Butte, M. E. Keir, T. B. Phamduy, A. H. Sharpe, G. J. Freeman, Immunity 2007, 27, 111–122;
- 21bS. M. Ansell, A. M. Lesokhin, I. Borrello, A. Halwani, E. C. Scott, M. Gutierrez, S. J. Schuster, M. M. Millenson, D. Cattry, G. J. Freeman, S. J. Rodig, B. Chapuy, A. H. Ligon, L. Zhu, J. F. Grosso, S. Y. Kim, J. M. Timmerman, M. A. Shipp, P. Armand, N. Engl. J. Med. 2015, 372, 311–319;
- 21cY. Chao, L. Xu, C. Liang, L. Feng, J. Xu, Z. Dong, L. Tian, X. Yi, K. Yang, Z. Liu, Nat. Biomed. Eng. 2018, 2, 611–621;
- 21dB. Li, T. Fang, Y. Li, T. Xue, Z. Zhang, L. Li, F. Meng, J. Wang, L. Hou, X. Liang, X. Zhang, Z. Gu, Nano Today 2022, 46, 101606.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.