Mg(C3O4H2)(H2O)2: A New Ultraviolet Nonlinear Optical Material Derived from KBe2BO3F2 with High Performance and Excellent Water-Resistance
Lingli Wu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Chensheng Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Search for more papers by this authorHaotian Tian
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Yuqiao Zhou
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorDr. Huixin Fan
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Shunda Yang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Search for more papers by this authorProf. Ning Ye
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Min Luo
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Search for more papers by this authorLingli Wu
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Chensheng Lin
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Search for more papers by this authorHaotian Tian
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
University of the Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Yuqiao Zhou
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorDr. Huixin Fan
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Shunda Yang
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Search for more papers by this authorProf. Ning Ye
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Min Luo
Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Search for more papers by this authorAbstract
Acquiring high-performance ultraviolet (UV) nonlinear optical (NLO) materials that simultaneously exhibit a strong second harmonic generation (SHG) coefficients, as short as possible SHG phase-matching (PM) wavelength and non-hygroscopic properties has consistently posed a significant challenge. Herein, through multicomponent modification of KBe2BO3F2 (KBBF), an excellent UV NLO crystal, Mg(C3O4H2)(H2O)2, was successfully synthesized in malonic system. This material possesses a unique 2D NLO-favorable electroneutral [Mg(C3O4H2)3(H2O)2]∞ layer, resulting in the rare coexistence of a strong SHG response of 3×KDP (@1064 nm) and short PM wavelength of 200 nm. More importantly, it exhibits exceptional water resistance, which is rare among ionic organic NLO crystals. Theoretical calculations revealed that its excellent water-resistant may be originated from its small available cavity volumes, which is similar to the famous LiB3O5 (LBO). Therefore, excellent NLO properties and stability against air and moisture indicate it should be a promising UV NLO crystal.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315647-sup-0001-Mg(C3O4)2H2O-1.cif364.6 KB | Supporting Information |
ange202315647-sup-0001-misc_information.pdf2.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Pan, S. P. Guo, B. W. Liu, H. G. Xue, G. C. Guo, Coord. Chem. Rev. 2018, 374, 464–496;
- 1bP. S. Halasyamani, J. M. Rondinelli, Nat. Commun. 2018, 9, 2972;
- 1cY. H. Hao, S. Y. Wen, J. J. Yao, Z. H. Wei, X. X. Zhang, Z. T. Jiang, Y. X. Mei, H. Cai, J. Solid State Chem. 2019, 270, 226–230;
- 1dY. Q. Li, J. H. Luo, S. G. Zhao, Acc. Chem. Res. 2022, 55, 3460–3469.
- 2
- 2aL. Kang, S. Y. Luo, G. Peng, N. Ye, Y. C. Wu, C. T. Chen, Z. S. Lin, Inorg. Chem. 2015, 54, 10533–10535;
- 2bZ. Y. Bai, L. H. Liu, D. M. Wang, C. L. Hu, Z. B. Lin, Chem. Sci. 2021, 12, 4014–4020;
- 2cL. Xiong, J. Chen, J. Lu, C. Y. Pan, L. M. Wu, Chem. Mater. 2018, 30, 7823–7830;
- 2dH. H. Cheng, F. M. Li, Z. H. Yang, S. L. Pan, Angew. Chem. Int. Ed. 2022, 61, e202115669.
- 3
- 3aP. F. Gong, X. M. Liu, L. Kang, Z. S. Lin, Inorg. Chem. Front. 2020, 7, 839–852;
- 3bL. Wang, H. M. Wang, D. Zhang, D. J. Gao, J. Bi, L. Huang, G. H. Zou, Inorg. Chem. Front. 2021, 8, 3317–3324;
- 3cH. T. Qiu, F. M. Li, Z. Li, Z. H. Yang, S. L. Pan, M. Mutailipu, J. Am. Chem. Soc. 2023, 145, 24401–24407;
- 3dB. Q. Yuan, H. P. Wu, Z. G. Hu, J. Y. Wang, Y. C. Wu, H. W. Yu, Chem. Mater. 2022, 34, 8004–8012;
- 3eX. H. Meng, P. F. Gong, C. L. Tang, W. L. Yin, Z. S. Lin, M. J. Xia, Adv. Opt. Mater. 2021, 9, 2100594.
- 4C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, S. J. Lin, J. Opt. Soc. Am. B 1989, 6, 616–621.
- 5C. T. Chen, B. C. Wu, A. D. Jiang, G. M. You, Sci. Sin. B 1985, 28, 235–243.
- 6C. T. Chen, G. L. Wang, X. Y. Wang, Z. Y. Xu, Appl. Phys. B 2009, 97, 9–25.
- 7G. H. Zou, N. Ye, L. Huang, X. S. Lin, J. Am. Chem. Soc. 2011, 133, 20001–20007.
- 8Y. X. Song, M. Luo, C. S. Lin, N. Ye, Chem. Mater. 2017, 29, 896–903.
- 9
- 9aF. Liang, L. Kang, X. Y. Zhang, M. H. Lee, Z. S. Lin, Y. C. Wu, Cryst. Growth Des. 2017, 17, 4015–4020;
- 9bJ. Lu, Y. K. Lian, L. Xiong, Q. R. Wu, M. Zhao, K. X. Shi, L. Chen, L. M. Wu, J. Am. Chem. Soc. 2019, 141, 16151–16159;
- 9cX. H. Meng, K. J. Kang, F. Liang, J. Tang, W. L. Yin, Z. S. Lin, M. J. Xia, Inorg. Chem. Front. 2020, 7, 3674–3686;
- 9dX. H. Meng, F. Liang, J. Tang, K. J. Kang, Q. Huang, W. L. Yin, Z. S. Lin, M. J. Xia, Eur. J. Inorg. Chem. 2019, 2791–2795;
- 9eF. Liang, N. Z. Wang, X. M. Liu, Z. S. Lin, Y. C. Wu, Chem. Commun. 2019, 55, 6257–6260.
- 10
- 10aC. Wu, X. X. Jiang, Z. J. Wang, H. Y. Sha, Z. S. Lin, Z. P. Huang, X. F. Long, M. G. Humphrey, C. Zhang, Angew. Chem. Int. Ed. 2021, 60, 14806–14810;
- 10bZ. Q. Chen, F. M. Li, Z. H. Yang, S. L. Pan, M. Mutailipu, Chem. Commun. 2023, 59, 12435.
- 11
- 11aB. B. Ivanova, M. Spiteller, Cryst. Growth Des. 2010, 10, 2470–2474;
- 11bD. H. Lin, M. Luo, C. S. Lin, L. L. Cao, N. Ye, Cryst. Growth Des. 2020, 20, 4904–4908.
- 12D. H. Lin, M. Luo, C. S. Lin, F. Xu, N. Ye, J. Am. Chem. Soc. 2019, 141, 3390–3394.
- 13M. Mutailipu, J. Han, Z. Li, F. M. Li, J. J. Li, F. F. Zhang, X. F. Long, Z. H. Yang, S. L. Pan, Nat. Photonics 2023, 17, 694–701.
- 14L. Xiong, L. M. Wu, L. Chen, Angew. Chem. Int. Ed. 2021, 60, 25063–25067.
- 15
- 15aS. Hussain, S. Muhammad, X. N. Chen, R. A. R. Saghir, M. N. Tahir, A. G. Al-Sehemi, S. M. Siddeeg, M. Khalid, Inorg. Chem. Commun. 2019, 107, 107450;
- 15bH. T. Tian, C. S. Lin, Y. Q. Zhou, X. Zhao, H. X. Fan, T. Yan, N. Ye, M. Luo, Angew. Chem. Int. Ed. 2023, 62, e202304858.
- 16
- 16aG. H. Zou, K. M. Ok, Chem. Sci. 2020, 11, 5404–5409;
- 16bZ. G. Xia, K. R. Poeppelmeier, Acc. Chem. Res. 2017, 50, 1222–1230;
- 16cM. Mutailipu, Z. Q. Xie, X. Su, M. Zhang, Y. Wang, Z. H. Yang, M. R. S. A. Janjua, S. L. Pan, J. Am. Chem. Soc. 2017, 139, 18397–18405.
- 17S. Guo, L. J. Liu, M. J. Xia, L. Kang, Q. Huang, C. Li, X. Y. Wang, Z. S. Lin, C. T. Chen, Inorg. Chem. 2016, 55, 6586–6591.
- 18G. H. Zou, C. S. Lin, H. Jo, G. Nam, T. S. You, K. M. Ok, Angew. Chem. Int. Ed. 2016, 55, 12078–12082.
- 19G. Peng, C. S. Lin, N. Ye, J. Am. Chem. Soc. 2020, 142, 20542–20546.
- 20M. Luo, C. S. Lin, D. H. Lin, N. Ye, Angew. Chem. Int. Ed. 2020, 59, 15978–15981.
- 21M. Mutailipu, M. Zhang, H. P. Wu, Z. H. Yang, Y. H. Shen, J. L. Sun, S. L. Pan, Nat. Commun. 2018, 9, 3089.
- 22
- 22aT. T. Tran, J. G. He, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2015, 137, 10504–10507;
- 22bT. T. Tran, J. Young, J. M. Rondinelli, P. S. Halasyamani, J. Am. Chem. Soc. 2017, 139, 1285–1295;
- 22cR. K. Li, P. Chen, Inorg. Chem. 2010, 49, 1561–1565.
- 23C. T. Chen, Int. Rev. Phys. Chem. 1989, 8, 65–91.
- 24
- 24aY. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, Appl. Phys. Lett. 1995, 67, 1818–1820;
- 24bY. Mori, Y. K. Yap, T. Kamimura, M. Yoshimura, T. Sasaki, Opt. Mater. 2002, 19, 1–5.
- 25Z. S. Lin, L. F. Xu, R. K. Li, Z. Z. Wang, C. T. Chen, M. H. Lee, E. G. Wang, D. S. Wang, Phys. Rev. B 2004, 70, 233104.
- 26T. Lu, F. W. Chen, J. Comput. Chem. 2012, 33, 580–592.
- 27T. Lu, Q. X. Chen, J. Comput. Chem. 2022, 43, 539–555.
- 28W. Zhang, P. S. Halasyamani, Cryst. Eng. Comm. 2017, 19, 4742–4748.
- 29Deposition number 2299511 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.