New Reaction Pathway of Superoxide Disproportionation Induced by a Soluble Catalyst in Li-O2 Batteries
Zhuoliang Jiang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorBo Wen
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYaohui Huang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYihe Guo
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYuzhe Wang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Fujun Li
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071 China
Search for more papers by this authorZhuoliang Jiang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorBo Wen
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYaohui Huang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYihe Guo
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYuzhe Wang
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Fujun Li
Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071 China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071 China
Search for more papers by this authorAbstract
Aprotic Li-O2 battery has attracted considerable interest for high theoretical energy density, however the disproportionation of the intermediate of superoxide (O2−) during discharge and charge leads to slow reaction kinetics and large voltage hysteresis. Herein, the chemically stable ruthenium tris(bipyridine) (RB) cations are employed as a soluble catalyst to alternate the pathway of O2− disproportionation and its kinetics in both the discharge and charge processes. RB captures O2− dimer and promotes their intramolecular charge transfer, and it decreases the energy barrier of the disproportionation reaction from 7.70 to 0.70 kcal mol−1. This facilitates the discharge and charge processes and simultaneously mitigates O2− and singlet oxygen related side reactions. These endow the Li-O2 battery with reduced discharge/charge voltage gap of 0.72 V and prolonged lifespan for over 230 cycles when coupled with RuO2 catalyst. This work highlights the vital role of superoxide disproportionation for Li-O2 battery.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315314-sup-0001-misc_information.pdf9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y. Sun, A. A. Frimer, M. Noked, S. A. Freunberger, D. Aurhach, Chem. Rev. 2020, 120, 6626–6683;
- 1bC. Tan, D. Cao, L. Zheng, Y. Shen, L. Chen, Y. Chen, J. Am. Chem. Soc. 2022, 144, 807–815;
- 1cY. Zhou, S. Guo, eScience 2023, 3, 100123.
- 2
- 2aA. Torayev, S. Engelke, Z. Su, L. E. Marbella, V. D. Andrade, A. Demortière, P. C. M. M. Magusin, C. Merlet, A. A. Franco, C. P. Grey, J. Phys. Chem. C 2021, 125, 4955–4967;
- 2bS. T. Plunkett, H. Wang, S. H. Park, Y. J. Lee, J. Cabana, K. Amine, S. Al-Hallaj, B. P. Chaplin, L. A. Curtiss, ACS Appl. Energ. Mater. 2020, 3, 12575–12583.
- 3
- 3aQ. Lv, Z. Zhu, Y. Ni, B. Wen, Z. Jiang, H. Fang, F. Li, J. Am. Chem. Soc. 2022, 144, 23239–23246;
- 3bZ. Lian, Y. Lu, S. Zhao, Z. Li, Q. Liu, Adv. Sci. 2023, 10, e2205975.
- 4D. Cao, X. Shen, A. Wang, F. Yu, Y. Wu, S. Shi, S. A. Freunberger, Y. Chen, Nat. Catal. 2022, 5, 193–201.
- 5
- 5aC. Prehal, S. Mondal, L. Lovicar, S. A. Freunberger, ACS Energy Lett. 2022, 7, 3112–3119;
- 5bJ. Xie, Q. Dong, I. Madden, X. Yao, Q. Cheng, P. Dornath, W. Fan, D. Wang, Nano Lett. 2015, 15, 8371–8376;
- 5cZ. Sun, X. Lin, C. Wang, A. Hu, Q. Hou, Y. Tan, W. Dou, R. Yuan, M. Zheng, Q. Dong, Angew. Chem. Int. Ed. 2022, 61, e202207570.
- 6
- 6aE. J. Askins, K. Amine, M. R. Zoric, M. Li, L. A. Curtiss, K. D. Glusac, Nat. Chem. 2023, 15, 1247–1254;
- 6bQ. Xiong, C. Li, Z. Li, Y. Liang, J. Li, J. Yan, G. Huang, X. Zhang, Adv. Mater. 2022, 34, 2110416;
- 6cJ. B. Park, S. H. Lee, H. G. Jung, D. Aurbach, Y. K. Sun, Adv. Mater. 2017, 30, 201704162.
- 7
- 7aX. Gao, Y. Chen, L. R. Johnson, Z. P. Jovanov, P. G. Bruce, Nat. Energy 2017, 2, 17118;
- 7bY. Zhang, L. Wang, X. Zhang, L. Guo, Y. Wang, Z. Peng, Adv. Mater. 2018, 30, 1705571.
- 8S. Ahn, C. Zor, S. Yang, M. Lagnoni, D. Dewar, T. Nimmo, C. Chau, M. Jenkins, A. J. Kibler, A. Pateman, G. J. Rees, X. Gao, P. Adamson, N. Grobert, A. Bertei, L. R. Johnson, P. G. Bruce, Nat. Chem. 2023, 15, 1022–1029.
- 9
- 9aX. Lin, Z. Sun, C. Tang, Y. Hong, P. Xu, X. Cui, R. Yuan, Z. Zhou, M. Zheng, Q. Dong, Adv. Energy Mater. 2020, 10, 2001592;
- 9bH. Wan, Y. Sun, W. Cai, Q. Shi, Y. Zhu, Y. Qian, Adv. Funct. Mater. 2022, 32, 2106984.
- 10P. Dongare, B. D. B. Myron, L. Wang, D. W. Thompson, T. J. Meyer, Coord. Chem. Rev. 2017, 345, 86–107.
- 11
- 11aL. He, J. Huang, Y. Chen, J. Phys. Chem. Lett. 2022, 13, 2033–2038;
- 11bE. Mourad, Y. K. Petit, R. Spezia, A. Samojlov, F. Summa, C. Prehal, C. Leypolda, N. Mahne, C. Slugovc, O. Fontaine, S. Brutti, S. A. Freunberger, Energy Environ. Sci. 2019, 12, 2559–2568.
- 12
- 12aT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592;
- 12bM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N.Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C.Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision A.03; Gaussian,Inc.: Wallingford, CT, 2016.
- 13
- 13aS. Dong, S. Yang, Y. Chen, C. Kuss, G. Cui, L. R. Johnson, X. Gao, P. G. Bruce, Joule 2022, 6, 185–192;
- 13bA. Schurmann, B. Luerssen, D. Mollenhauer, J. Janek, D. Schroder, Chem. Rev. 2021, 121, 12445–12464.
- 14Z. Jiang, Y. Huang, Z. Zhu, S. Gao, Q. Lv, F. Li, Proc. Natl. Acad. Sci. USA 2022, 119, e2202835119.
- 15J. Wandt, P. Jakes, J. Granwehr, H. A. Gasteiger, R. A. Eichel, Angew. Chem. Int. Ed. 2016, 55, 6892–6895.
- 16N. Mahne, B. Schafzahl, C. Leypold, M. Leypold, S. Grumm, A. Leitgeb, G. A. Strohmeier, M. Wilkening, O. Fontaine, D. Kramer, C. Slugovc, S. M. Borisov, S. A. Freunberger, Nat. Energy 2017, 2, 17036.
- 17
- 17aJ. E. Kim, H. W. Lee, W. J. Kwak, Adv. Funct. Mater. 2022, 32, 2209012;
- 17bQ. Lv, Z. Zhu, Y. Ni, J. Geng, F. Li, Angew. Chem. Int. Ed. 2022, 61, e202114293;
- 17cY. K. Petit, E. Mourad, C. Prehal, C. Leypold, A. Windischbacher, D. Mijailovic, C. Slugovc, S. M. Borisov, E. Zojer, S. Brutti, O. Fontaine, S. A. Freunberger, Nat. Chem. 2021, 13, 465–471.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.