Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes
Correction(s) for this article
-
Berichtigung: Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes
- Volume 136Issue 13Angewandte Chemie
- First Published online: January 15, 2024
Zhi-Zhou Pan
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorJia-Heng Li
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorHu Tian
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Liang Yin
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorZhi-Zhou Pan
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorJia-Heng Li
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorHu Tian
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorCorresponding Author
Prof. Liang Yin
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorAbstract
Catalytic asymmetric allylation of ketones under proton-transfer conditions is a challenging issue due to the limited pronucleophiles and the electrophilic inertness of ketones. Herein, a copper(I)-catalyzed asymmetric allylation of ketones with 2-aza-1,4-dienes (N-allyl-1,1-diphenylmethanimines) is disclosed, which affords a series of functionalized homoallyl tertiary alcohols in high to excellent enantioselectivity. Interestingly, N-allyl-1,1-diphenylmethanimines work as synthetic equivalents of propanals. Upon the acidic workup, a formal asymmetric β-addition of propanals to ketones is achieved. An investigation on KIE effect indicates that the deprotonation of N-allyl-1,1-diphenylmethanimines is the rate-determining step, which generates nucleophilic allyl copper(I) species. Finally, the synthetic utility of the present method is demonstrated by the asymmetric synthesis of (R)-boivinianin A and (R)-gossonorol.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202315293-sup-0001-misc_information.pdf11.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. E. Denmark, J. Fu, Chem. Rev. 2003, 103, 2763–2793;
- 1bS. B. Han, I. S. Kim, M. J. Krische, Chem. Commun. 2009, 7278–7287;
- 1cM. Yus, J. C. González-Gómez, F. Foubelo, Chem. Rev. 2011, 111, 7774–7854;
- 1dH.-X. Huo, J. R. Duvall, M.-Y. Huang, R. Hong, Org. Chem. Front. 2014, 1, 303–320;
- 1eS. W. Kim, W. Zhang, M. J. Krische, Acc. Chem. Res. 2017, 50, 2371–2380;
- 1fC. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017, 139, 2–14;
- 1gK. Spielmann, G. Niel, R. M. de Figueiredo, J.-M. Campagne, Chem. Soc. Rev. 2018, 47, 1159–1173;
- 1hM. Holmes, L. A. Schwartz, M. J. Krische, Chem. Rev. 2018, 118, 6026–6052;
- 1iG. J. P. Perry, T. Jia, D. J. Procter, ACS Catal. 2020, 10, 1485–1499;
- 1jC. G. Santana, M. J. Krische, ACS Catal. 2021, 11, 5572–5585;
- 1kE. Ortiz, C. Saludares, J. Wu, Y. Cho, C. G. Santana, M. J. Krische, Synthesis 2023, 55, 1487–1496.
- 2
- 2aS. Yamasaki, K. Fujii, R. Wada, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2002, 124, 6536–6537;
- 2bR. Wada, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 8910–8911;
- 2cS.-L. Shi, L.-W. Xu, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2010, 132, 6638–6639.
- 3
- 3aE. Y. Tsai, R. Y. Liu, Y. Yang, S. L. Buchwald, J. Am. Chem. Soc. 2018, 140, 2007–2011;
- 3bR. Y. Liu, Y. Zhou, Y. Yang, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 2251–2256;
- 3cY. Yang, I. B. Perry, G. Lu, P. Liu, S. L. Buchwald, Science 2016, 353, 144–150;
- 3dC. Li, R. Y. Liu, L. T. Jesikiewicz, Y. Yang, P. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 5062–5070;
- 3eB. Fu, X. Yuan, Y. Li, Y. Wang, Q. Zhang, T. Xiong, Q. Zhang, Org. Lett. 2019, 21, 3576–3580;
- 3fC. Li, K. Shin, R. Y. Liu, S. L. Buchwald, Angew. Chem. Int. Ed. 2019, 58, 17074–17080;
- 3gJ.-J. Feng, Y. Xu, M. Oestreich, Chem. Sci. 2019, 10, 9679–9683;
- 3hS. Gao, M. Chen, Chem. Sci. 2019, 10, 7554–7560;
- 3iS. Gao, M. Chen, Chem. Commun. 2019, 55, 11199–11202;
- 3jM. Xu, Q. Lu, B. Gong, W. Ti, A. Lin, H. Yao, S. Gao, Angew. Chem. Int. Ed. 2023, 62, e202311540.
- 4X.-F. Wei, X.-W. Xie, Y. Shimizu, M. Kanai, J. Am. Chem. Soc. 2017, 139, 4647–4650.
- 5F. Zhong, Z.-Z. Pan, S.-W. Zhou, H.-J. Zhang, L. Yin, J. Am. Chem. Soc. 2021, 143, 4556–4562.
- 6
- 6aZ. J. Dubey, W. Shen, J. A. Little, M. J. Krische, J. Am. Chem. Soc. 2023, 145, 8576–8582;
- 6bM. Xiang, D. E. Pfaffinger, M. J. Krische, Chem. Eur. J. 2021, 27, 13107–13116;
- 6cK. D. Nguyen, B. Y. Park, T. Luong, H. Sato, V. J. Garza, M. J. Krische, Science 2016, 354, 300;
- 6dJ. M. Ketcham, I. Shin, T. P. Montgomery, M. J. Krische, Angew. Chem. Int. Ed. 2014, 53, 9142–9150;
- 6eJ. F. Bower, I. S. Kim, R. L. Patman, M. J. Krische, Angew. Chem. Int. Ed. 2009, 48, 34–46;
- 6fR. L. Patman, J. F. Bower, I. S. Kim, M. J. Krische, Aldrichimica Acta 2008, 41, 95–104.
- 7
- 7aK. Li, X. Shao, L. Tseng, S. J. Malcolmson, J. Am. Chem. Soc. 2018, 140, 598–601;
- 7bX. Shao, K. Li, S. J. Malcolmson, J. Am. Chem. Soc. 2018, 140, 7083–7087.
- 8P. Zhou, X. Shao, S. J. Malcolmson, J. Am. Chem. Soc. 2021, 143, 13999–14008.
- 9Z.-Z. Pan, D. Pan, J.-H. Li, X.-S. Xue, L. Yin, J. Am. Chem. Soc. 2023, 145, 1749–1758.
- 10For an early study on the non-enantioselective addition of N-allyl-1,1-diphenylmethanimine to aldehydes and ketones, see: G. Wolf, E.-U. Würthwein, Tetrahedron Lett. 1988, 29, 3647–3650.
- 11
- 11aK. Li, A. E. Weber, L. Tseng, S. J. Malcolmson, Org. Lett. 2017, 19, 4239–4242;
- 11bM. B. Uphade, A. A. Reddy, S. P. Khandare, K. R. Prasad, Org. Lett. 2019, 21, 9109–9113;
- 11cK. R. Prasad, M. B. Uphade, J. Org. Chem. 2019, 84, 9648–9660;
- 11dT.-C. Wang, L. Zhu, S. Luo, Z.-S. Nong, P.-S. Wang, L.-Z. Gong, J. Am. Chem. Soc. 2021, 143, 20454–20461.
- 12
- 12aZ. Fu, J. Xu, T. Zhu, W. W. Y. Leong, Y. R. Chi, Nat. Chem. 2013, 5, 835–839;
- 12bY. Xie, C. Yu, T. Li, S. Tu, C. Yao, Chem. Eur. J. 2015, 21, 5355–5359;
- 12cJ. Ma, A. R. Rosales, X. Huang, K. Harms, R. Riedel, O. Wiest, E. Meggers, J. Am. Chem. Soc. 2017, 139, 17245–17248.
- 13Except for the first catalytic run, the deprotonation of N-allyl-1,1-diphenylmethanimine (1 a) occurs with the protonation of generated copper alkoxide species.
- 14S. Li, Q. Chen, J. Yang, J. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202202046.
- 15F. Liu, J. Tian, Y. Liu, C. Tao, H. Zhu, A. Zhang, D. Xu, B. Zhao, Org. Chem. Front. 2017, 4, 1586–1589.
- 16D. A. Mulholland, K. McFarland, M. Randrianarivelojosia, Biochem. Syst. Ecol. 2006, 34, 365–369.
- 17
- 17aG. W. Elzen, H. J. Williams, S. B. Vinson, J. Chem. Ecol. 1984, 10, 1251–1264;
- 17bP. Weyerstahl, S. Schneider, H. Marschall, A. Rustaiyan, Liebigs Ann. Chem. 1993, 111–116.
- 18
- 18aK. Abecassis, S. E. Gibson, Eur. J. Org. Chem. 2010, 2938–2944;
- 18bS. E. Kavanagh, D. G. Gilheany, Org. Lett. 2020, 22, 8198–8203;
- 18cR. Maji, S. Ghosh, O. Grossmann, P. Zhang, M. Leutzsch, N. Tsuji, B. List, J. Am. Chem. Soc. 2023, 145, 8788–8793.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.