Directional Defect Management in Perovskites by In Situ Decomposition of Organic Metal Chalcogenides for Efficient Solar Cells
Prof. Guan-E Wang
State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002 China
These authors contributed equally to this work.
Search for more papers by this authorGuo-Bin Xiao
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorCong-Ping Li
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000 China
Search for more papers by this authorDr. Zhi-Hua Fu
State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Jing Cao
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Gang Xu
State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Search for more papers by this authorProf. Guan-E Wang
State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002 China
These authors contributed equally to this work.
Search for more papers by this authorGuo-Bin Xiao
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000 China
These authors contributed equally to this work.
Search for more papers by this authorCong-Ping Li
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000 China
Search for more papers by this authorDr. Zhi-Hua Fu
State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Jing Cao
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000 China
Search for more papers by this authorCorresponding Author
Prof. Gang Xu
State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108 China
Search for more papers by this authorAbstract
Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to “find” and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2S and PbS. The resultant Cu2S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313833-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Zhu, Y. Ren, L. Pan, O. Ouellette, F. T. Eickemeyer, Y. Wu, X. Li, S. Wang, H. Liu, X. Dong, S. M. Zakeeruddin, Y. Liu, A. Hagfeldt, M. Grätzel, J. Am. Chem. Soc. 2021, 143, 3231–3237;
- 1bZ. Liu, L. Qiu, L. K. Ono, S. He, Z. Hu, M. Jiang, G. Tong, Z. Wu, Y. Jiang, D.-Y. Son, Y. Dang, S. Kazaoui, Y. Qi, Nat. Energy 2020, 5, 596–604;
- 1cG. Kim, H. Min, S. Lee Kyoung, Y. Lee Do, M. Yoon So, I. Seok Sang, Science 2020, 370, 108–112;
- 1dJ. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. F. A. M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman, M. D. McGehee, Science 2020, 367, 1097–1104;
- 1eM. Jeong, I. W. Choi, E. M. Go, Y. Cho, M. Kim, B. Lee, S. Jeong, Y. Jo, H. W. Choi, J. Lee, J.-H. Bae, S. K. Kwak, D. S. Kim, C. Yang, Science 2020, 369, 1615–1620;
- 1fJ. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. Kim, C. S. Moon, N. J. Jeon, J.-P. Correa-Baena, V. Bulović, S. S. Shin, M. G. Bawendi, Nature 2021, 590, 587–593;
- 1gY. Xu, X. Guo, Z. Lin, Q. Wang, J. Su, J. Zhang, Y. Hao, K. Yang, J. Chang, Angew. Chem. Int. Ed. 2023, 62, e202306229.
- 2
- 2aX. Zhang, C.-B. Nie, T.-Y. Zhou, Q.-Y. Qi, J. Fu, X.-Z. Wang, L. Dai, Y. Chen, X. Zhao, Polym. Chem. 2015, 6, 1923–1927;
- 2bL. Wang, B. Chang, H. Li, Y. Wu, L. Zhang, L. Yin, Angew. Chem. Int. Ed. 2023, 62, e202304256;
- 2cH. Guo, W. Xiang, Y. Fang, J. Li, Y. Lin, Angew. Chem. Int. Ed. 2023, 62, e202304568;
- 2dW. Peng, K. Mao, F. Cai, H. Meng, Z. Zhu, T. Li, S. Yuan, Z. Xu, X. Feng, J. Xu, M. D. McGehee, J. Xu, Science 2023, 379, 683–690.
- 3
- 3aZ. Yu, L. Wang, X. Mu, C.-C. Chen, Y. Wu, J. Cao, Y. Tang, Angew. Chem. Int. Ed. 2021, 60, 6294–6299;
- 3bG.-B. Xiao, L.-Y. Wang, X.-J. Mu, X.-X. Zou, Y.-Y. Wu, J. Cao, CCS Chem. 2021, 3, 25–36;
- 3cH. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444–450;
- 3dA. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong, W. Zhang, S. Luo, G. Na, C. Tian, X. Hou, Y. Xiong, Z. Zhang, S. Liu, S. Uchida, T.-W. Kim, Y. Yuan, L. Zhang, Y. Zhou, H. Han, Joule 2020, 4, 2646–2660;
- 3eD. Li, D. Zhang, K.-S. Lim, Y. Hu, Y. Rong, A. Mei, N.-G. Park, H. Han, Adv. Funct. Mater. 2021, 31, 2008621;
- 3fB. Chen, C. Fei, S. Chen, H. Gu, X. Xiao, J. Huang, Nat. Commun. 2021, 12, 5859–5868;
- 3gC. Luo, G. Zheng, F. Gao, X. Wang, C. Zhan, X. Gao, Q. Zhao, Nat. Photonics 2023, 17, 856–864.
- 4
- 4aN. Li, Y. Luo, Z. Chen, X. Niu, X. Zhang, J. Lu, R. Kumar, J. Jiang, H. Liu, X. Guo, B. Lai, G. Brocks, Q. Chen, S. Tao, D. P. Fenning, H. Zhou, Joule 2020, 4, 1743–1758;
- 4bD. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater. 2020, 5, 44–60;
- 4cN. Li, X. Niu, L. Li, H. Wang, Z. Huang, Y. Zhang, Y. Chen, X. Zhang, C. Zhu, H. Zai, Y. Bai, S. Ma, H. Liu, X. Liu, Z. Guo, G. Liu, R. Fan, H. Chen, J. Wang, Y. Lun, X. Wang, J. Hong, H. Xie, S. Jakob Devon, G. Xu Xiaoji, Q. Chen, H. Zhou, Science 2021, 373, 561–567;
- 4dX. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen, Y. Zhao, Angew. Chem. Int. Ed. 2021, 60, 12351–12355.
- 5L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, Science 2019, 363, 265–270.
- 6Z. Fan, H. Xiao, Y. Wang, Z. Zhao, Z. Lin, H.-C. Cheng, S.-J. Lee, G. Wang, Z. Feng, W. A. Goddard, Y. Huang, X. Duan, Joule 2017, 1, 548–562.
- 7
- 7aT. H. Han, J. W. Lee, C. Choi, S. Tan, C. Lee, Y. P. Zhao, Z. H. Dai, N. De Marco, S. J. Lee, S. H. Bae, Y. H. Yuan, H. M. Lee, Y. Huang, Y. Yang, Nat. Commun. 2019, 10, 520;
- 7bQ. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 2019, 13, 460–466;
- 7cJ. Cao, C. Li, X. Lv, X. Feng, R. Meng, Y. Wu, Y. Tang, J. Am. Chem. Soc. 2018, 140, 11577–11580;
- 7dZ. Fang, L. Wang, X. Mu, B. Chen, Q. Xiong, W. D. Wang, J. Ding, P. Gao, Y. Wu, J. Cao, J. Am. Chem. Soc. 2021, 143, 18989–18996;
- 7eF. Cheng, R. He, S. Nie, C. Zhang, J. Yin, J. Li, N. Zheng, B. Wu, J. Am. Chem. Soc. 2021, 143, 5855–5866;
- 7fR. Chen, Y. Wang, S. Nie, H. Shen, Y. Hui, J. Peng, B. Wu, J. Yin, J. Li, N. Zheng, J. Am. Chem. Soc. 2021, 143, 10624–10632;
- 7gG.-B. Xiao, Z.-F. Yu, J. Cao, Y. Tang, CCS Chem. 2020, 2, 488–494;
- 7hY. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui, H. Chen, X. Yang, L. Han, Science 2019, 365, 687–691.
- 8S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2019, 141, 5781–5787.
- 9S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, Y. Gao, F. De Angelis, J. Huang, Science 2019, 365, 473–478.
- 10
- 10aX. Wu, H. Zhang, J. Zhang, X. W. D. Lou, Adv. Mater. 2021, 33, e2008376;
- 10bY. Wen, G. E. Wang, X. Jiang, X. Ye, W. Li, G. Xu, Angew. Chem. Int. Ed. 2021, 60, 19710–19714;
- 10cK. H. Low, V. A. Roy, S. S. Chui, S. L. Chan, C. M. Che, Chem. Commun. 2010, 46, 7328–7330;
- 10dY. Li, J. Shu, Q. Huang, K. Chiranjeevulu, P. N. Kumar, G. E. Wang, W. H. Deng, D. Tang, G. Xu, Chem. Commun. 2019, 55, 10444–10447;
- 10eH. Jiang, L. Cao, Y. Li, W. Li, X. Ye, W. Deng, X. Jiang, G. Wang, G. Xu, Chem. Commun. 2020, 56, 5366–5369;
- 10fQ.-Q. Huang, Y.-Z. Li, Z. Zheng, X.-M. Jiang, S.-S. Sun, H.-J. Jiang, W.-H. Deng, G.-E. Wang, T.-Y. Zhai, M.-D. Li, G. Xu, CCS Chem. 2020, 2, 655–662;
- 10gM. R. Gao, Y. F. Xu, J. Jiang, S. H. Yu, Chem. Soc. Rev. 2013, 42, 2986–3017.
- 11Y. Li, X. Jiang, Z. Fu, Q. Huang, G. E. Wang, W. H. Deng, C. Wang, Z. Li, W. Yin, B. Chen, G. Xu, Nat. Commun. 2020, 11, 261.
- 12
- 12aD. M. N. M. Dissanayake, R. A. Hatton, T. Lutz, R. J. Curry, S. R. P. Silva, Nanotechnology 2009, 20, 195205–195209;
- 12bD. A. Dixon, J. L. Gole, Chem. Phys. Lett. 1992, 189, 390–394;
- 12cS. C. Riha, S. Jin, S. V. Baryshev, E. Thimsen, G. P. Wiederrecht, A. B. F. Martinson, ACS Appl. Mater. Interfaces 2013, 5, 10302–10309.
- 13N. H. Hemasiri, S. Kazim, S. Ahmad, Nano Energy 2020, 77, 105292–105302.
- 14F. Cai, J. Cai, L. Yang, W. Li, R. S. Gurney, H. Yi, A. Iraqi, D. Liu, T. Wang, Nano Energy 2018, 45, 28–36.
- 15J. Cao, B. Wu, R. Chen, Y. Wu, Y. Hui, B.-W. Mao, N. Zheng, Adv. Mater. 2018, 30, 1705596–1175605.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.