Alicyclic-Amine-Derived Imine-BF3 Complexes: Easy-to-Make Building Blocks for the Synthesis of Valuable α-Functionalized Azacycles
Subhradeep Dutta
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Jae Hyun Kim
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorKamal Bhatt
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDillon R. L. Rickertsen
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Khalil A. Abboud
Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Ion Ghiviriga
Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Daniel Seidel
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorSubhradeep Dutta
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Jae Hyun Kim
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
College of Pharmacy, Chung-Ang University, Seoul, 06974 Republic of Korea
These authors contributed equally to this work.
Search for more papers by this authorKamal Bhatt
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDillon R. L. Rickertsen
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Khalil A. Abboud
Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorDr. Ion Ghiviriga
Center for NMR Spectroscopy, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorCorresponding Author
Prof. Dr. Daniel Seidel
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611 USA
Search for more papers by this authorAbstract
A new strategy to access α-functionalized alicyclic amines via their corresponding imine-BF3 complexes is reported. Isolable imine-BF3 complexes, readily prepared via dehydrohalogenation of N-bromoamines in a base-promoted/18-crown-6 catalyzed process followed by addition of boron trifluoride etherate, undergo reactions with a wide range of organometallic nucleophiles to afford α-functionalized azacycles. Organozinc and organomagnesium nucleophiles add at ambient temperatures, obviating the need for cryogenic conditions. In situ preparation of imine-BF3 complexes provides access to α-functionalized morpholines and piperazines directly from their parent amines in a single operation. α-Functionalized morpholines can be elaborated further, for instance by installing a second substituent in the α′-position.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202313247-sup-0001-hyun1.cif1.2 MB | Supporting Information |
ange202313247-sup-0001-misc_information.pdf12.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. D. Taylor, M. MacCoss, A. D. Lawson, J. Med. Chem. 2014, 57, 5845–5859;
- 1bE. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257–10274.
- 2Selected reviews on importance of piperazines and morpholines in small molecule drugs:
- 2aM. Shaquiquzzaman, G. Verma, A. Marella, M. Akhter, W. Akhtar, M. F. Khan, S. Tasneem, M. M. Alam, Eur. J. Med. Chem. 2015, 102, 487–529;
- 2bZ. Ye, K. E. Gettys, M. Dai, Beilstein J. Org. Chem. 2016, 12, 702–715;
- 2cK. Gettys, Z. Ye, M. Dai, Synthesis 2017, 49, 2589–2604;
- 2dV. A. Palchykov, V. A. Chebanov, Chem. Heterocycl. Compd. 2019, 55, 324–332;
- 2eA. P. Kourounakis, D. Xanthopoulos, A. Tzara, Med. Res. Rev. 2020, 40, 709–752;
- 2fA. Kumari, R. K. Singh, Bioorg. Chem. 2020, 96, 103578;
- 2gC. Durand, M. Szostak, Organics 2021, 2, 337–347.
- 3A. Tzara, D. Xanthopoulos, A. P. Kourounakis, ChemMedChem 2020, 15, 392–403.
- 4For a general overview of amine C−H bond functionalization, see:
- 4aS. Dutta, B. Li, D. R. L. Rickertsen, D. A. Valles, D. Seidel, SynOpen 2021, 5, 173–228. For other selected reviews, see:
- 4bK. R. Campos, Chem. Soc. Rev. 2007, 36, 1069–1084;
- 4cR. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, Chem. Eur. J. 2010, 16, 2654–2672;
- 4dE. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2012, 18, 10092–10142;
- 4eB. Peng, N. Maulide, Chem. Eur. J. 2013, 19, 13274–13287;
- 4fS. A. Girard, T. Knauber, C. J. Li, Angew. Chem. Int. Ed. 2014, 53, 74–100;
- 4gM. C. Haibach, D. Seidel, Angew. Chem. Int. Ed. 2014, 53, 5010–5036;
- 4hJ. W. Beatty, C. R. Stephenson, Acc. Chem. Res. 2015, 48, 1474–1484;
- 4iJ. C. K. Chu, T. Rovis, Angew. Chem. Int. Ed. 2018, 57, 62–101;
- 4jL. Stateman, K. Nakafuku, D. A. Nagib, Synthesis 2018, 50, 1569–1586;
- 4kP. M. Edwards, L. L. Schafer, Chem. Commun. 2018, 54, 12543–12560;
- 4lL. Gonnard, A. Guérinot, J. Cossy, Tetrahedron 2019, 75, 145–163;
- 4mS. Liu, Z. Zhao, Y. Wang, Chem. Eur. J. 2019, 25, 2423–2441;
- 4nD. Antermite, J. A. Bull, Synthesis 2019, 51, 3171–3204;
- 4oA. Trowbridge, S. M. Walton, M. J. Gaunt, Chem. Rev. 2020, 120, 2613–2692;
- 4pM. Kapoor, A. Singh, K. Sharma, M. Hua Hsu, Adv. Synth. Catal. 2020, 362, 4513–4542;
- 4qX.-D. An, J. Xiao, Org. Chem. Front. 2021, 8, 1364–1383;
- 4rS. Basak, L. Winfrey, B. A. Kustiana, R. L. Melen, L. C. Morrill, A. P. Pulis, Chem. Soc. Rev. 2021, 50, 3720–3737;
- 4sM. J. Caplin, D. J. Foley, Chem. Sci. 2021, 12, 4646–4660;
- 4tM. Arisawa, S. Ohno, M. Miyoshi, K. Murai, Synthesis 2021, 53, 2947–2960;
- 4uY. He, Z. Zheng, J. Yang, X. Zhang, X. Fan, Org. Chem. Front. 2021, 8, 4582–4606;
- 4vW. Chen, D. Seidel, Synthesis 2021, 53, 3869–3908;
- 4wW. Chen, X. Yang, X. Cao, SynOpen 2022, 06, 286–305;
- 4xW. Chen, X. Cao, X. Yang, Asian J. Org. Chem. 2023, 12, e202200547.
- 5For recent examples of mechanistically diverse methods for amine C−H bond functionalization, see:
- 5aJ. B. McManus, N. P. R. Onuska, D. A. Nicewicz, J. Am. Chem. Soc. 2018, 140, 9056–9060;
- 5bJ. B. McManus, N. P. R. Onuska, M. S. Jeffreys, N. C. Goodwin, D. A. Nicewicz, Org. Lett. 2020, 22, 679–683;
- 5cN. Holmberg-Douglas, Y. Choi, B. Aquila, H. Huynh, D. A. Nicewicz, ACS Catal. 2021, 11, 3153–3158;
- 5dM.-J. Yi, H.-X. Zhang, T.-F. Xiao, J.-H. Zhang, Z.-T. Feng, L.-P. Wei, G.-Q. Xu, P.-F. Xu, ACS Catal. 2021, 11, 3466–3472;
- 5eE. Y. Aguilera, M. S. Sanford, Angew. Chem. Int. Ed. 2021, 60, 11227–11230;
- 5fY. Chang, M. Cao, J. Z. Chan, C. Zhao, Y. Wang, R. Yang, M. Wasa, J. Am. Chem. Soc. 2021, 143, 2441–2455;
- 5gW. J. Yue, C. S. Day, R. Martin, J. Am. Chem. Soc. 2021, 143, 6395–6400;
- 5hA. Koperniku, L. L. Schafer, Chem. Eur. J. 2021, 27, 6334–6339;
- 5iL. F. T. Novaes, J. S. K. Ho, K. Mao, K. Liu, M. Tanwar, M. Neurock, E. Villemure, J. A. Terrett, S. Lin, J. Am. Chem. Soc. 2022, 144, 1187–1197;
- 5jJ. Rodrigalvarez, L. A. Reeve, J. Miro, M. J. Gaunt, J. Am. Chem. Soc. 2022, 144, 3939–3948;
- 5kX. Shu, D. Zhong, Y. Lin, X. Qin, H. Huo, J. Am. Chem. Soc. 2022, 144, 8797–8806;
- 5lT. Feng, S. Wang, Y. Liu, S. Liu, Y. Qiu, Angew. Chem. Int. Ed. 2022, 61, e202115178;
- 5mY. Gong, L. Su, Z. Zhu, Y. Ye, H. Gong, Angew. Chem. Int. Ed. 2022, 61, e202201662;
- 5nW. Lee, D. Kim, S. Seo, S. Chang, Angew. Chem. Int. Ed. 2022, 61, e202202971;
- 5oR. Guo, H. Xiao, S. Li, Y. Luo, J. Bai, M. Zhang, Y. Guo, X. Qi, G. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202208232;
- 5pJ. Chen, H. Wang, C. S. Day, R. Martin, Angew. Chem. Int. Ed. 2022, 61, e202212983;
- 5qI. Klose, G. Di Mauro, D. Kaldre, N. Maulide, Nat. Chem. 2022, 14, 1306–1310;
- 5rJ. L. Zhu, C. R. Schull, A. T. Tam, A. Renteria-Gomez, A. R. Gogoi, O. Gutierrez, K. A. Scheidt, J. Am. Chem. Soc. 2023, 145, 1535–1541;
- 5sE. Mao, D. W. C. MacMillan, J. Am. Chem. Soc. 2023, 145, 2787–2793;
- 5tK. Korvorapun, Y. T. Boni, T. C. Maier, A. Bauer, T. Licher, J. E. Macor, V. Derdau, H. M. L. Davies, ACS Catal. 2023, 13, 2359–2366;
- 5uT. Shen, Y. L. Li, K. Y. Ye, T. H. Lambert, Nature 2023, 614, 275–280;
- 5vY. Kuroda, K. Park, Y. Shimazaki, R. L. Zhong, S. Sakaki, Y. Nakao, Angew. Chem. Int. Ed. 2023, 62, e202300704.
- 6
- 6aW. Chen, L. Ma, A. Paul, D. Seidel, Nat. Chem. 2018, 10, 165–169;
- 6bA. Paul, D. Seidel, J. Am. Chem. Soc. 2019, 141, 8778–8782;
- 6cW. Chen, A. Paul, K. A. Abboud, D. Seidel, Nat. Chem. 2020, 12, 545–550;
- 6dA. Paul, J. H. Kim, S. D. Daniel, D. Seidel, Angew. Chem. Int. Ed. 2021, 60, 1625–1628;
- 6eJ. H. Kim, A. Paul, I. Ghiviriga, D. Seidel, Org. Lett. 2021, 23, 797–801;
- 6fW. Chen, D. Seidel, Org. Lett. 2021, 23, 3729–3734;
- 6gD. A. Valles, S. Dutta, A. Paul, K. A. Abboud, I. Ghiviriga, D. Seidel, Org. Lett. 2021, 23, 6367–6371;
- 6hA. Paul, C. Vasseur, S. D. Daniel, D. Seidel, Org. Lett. 2022, 24, 1224–1227;
- 6iF. Yu, D. A. Valles, W. Chen, S. D. Daniel, I. Ghiviriga, D. Seidel, Org. Lett. 2022, 24, 6364–6368;
- 6jS. Dutta, K. Bhatt, F. Cuffel, D. Seidel, Synthesis 2023, 55, 2343–2352.
- 7For an early review on the ability of lithium amides to serve as reductants, see:
- 7aM. Majewski, D. M. Gleave, J. Organomet. Chem. 1994, 470, 1–16. For selected key contributions, see:
- 7bG. Wittig, H. J. Schmidt, H. Renner, Chem. Ber. 1962, 95, 2377–2383;
- 7cG. Wittig, A. Hesse, Liebigs Ann. Chem. 1971, 746, 149–173;
- 7dG. Wittig, A. Hesse, Liebigs Ann. Chem. 1971, 746, 174–184;
- 7eG. Wittig, G. Häusler, Liebigs Ann. Chem. 1971, 746, 185–199.
- 8For a review on organic oxidants as hydride acceptor, see: J. L. Miller, J. I. A. Lawrence, F. O. Rodriguez Del Rey, P. E. Floreancig, Chem. Soc. Rev. 2022, 51, 5660–5690.
- 9Examples of imine activation with Lewis acids:
- 9aC. N. Meltz, R. A. Volkmann, Tetrahedron Lett. 1983, 24, 4503–4506;
- 9bM. Wada, Y. Sakurai, K.-y. Akiba, Tetrahedron Lett. 1984, 25, 1083–1084;
- 9cM. A. Brook, Jahangir, Synth. Commun. 1988, 18, 893–898;
- 9dT. Kawate, M. Nakagawa, H. Yamazaki, M. Hirayama, T. Hino, Chem. Pharm. Bull. 1993, 41, 287–291;
- 9eK. B. Aubrecht, M. D. Winemiller, D. B. Collum, J. Am. Chem. Soc. 2000, 122, 11084–11089;
- 9fA. R. Katritzky, Q. Hong, Z. Yang, J. Org. Chem. 1994, 59, 7947–7948.
- 10Y. Ma, E. Lobkovsky, D. B. Collum, J. Org. Chem. 2005, 70, 2335–2337.
- 11J. M. Blackwell, W. E. Piers, M. Parvez, R. McDonald, Organometallics 2002, 21, 1400–1407.
- 12Z. Zhang, D. B. Collum, J. Am. Chem. Soc. 2019, 141, 388–401.
- 13D. R. Fandrick, C. A. Hart, I. S. Okafor, M. A. Mercadante, S. Sanyal, J. T. Masters, M. Sarvestani, K. R. Fandrick, J. L. Stockdill, N. Grinberg, N. Gonnella, H. Lee, C. H. Senanayake, Org. Lett. 2016, 18, 6192–6195.
- 14Deposition number 2211227 (for 1-piperideine-BF3 complex) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 15Selected applications of imine trimers:
- 15aG. A. Kraus, K. Neuenschwander, J. Org. Chem. 1981, 46, 4791–4792;
- 15bH. Fukawa, Y. Terao, K. Achiwa, M. Sekiya, Chem. Lett. 1982, 11, 231–232;
- 15cY. Terao, Y. Yasumoto, K. Ikeda, M. Sekiya, Chem. Pharm. Bull. 1986, 34, 105–108;
- 15dN. De Kimpe, C. Stevens, J. Org. Chem. 1993, 58, 2904–2906;
- 15eA. Couture, E. Deniau, S. Lebrun, P. C. Grandclaudon, J.-F. Carpentier, J. Chem. Soc. Perkin Trans. 1 1998, 1403–1408;
- 15fD. Sampedro, A. Migani, A. Pepi, E. Busi, R. Basosi, L. Latterini, F. Elisei, S. Fusi, F. Ponticelli, V. Zanirato, M. Olivucci, J. Am. Chem. Soc. 2004, 126, 9349–9359;
- 15gN. E. Shevchenko, K. Vlasov, V. G. Nenajdenko, G.-V. Röschenthaler, Tetrahedron 2011, 67, 69–74.
- 16
- 16aY. Nomura, K. Ogawa, Y. Takeuchi, S. Tomoda, Chem. Lett. 1977, 6, 693–696;
- 16bG. P. Claxton, L. Allen, J. M. Grisar, Org. Synth. 1977, 56, 118–120;
- 16cF. E. Scully Jr., J. Org. Chem. 1980, 45, 1515–1517;
- 16dM. A. M. Healy, S. A. Smith, G. A. Stemp, Synth. Commun. 1995, 25, 3789–3797;
- 16eR. Gu, K. Flidrova, J.-M. Lehn, J. Am. Chem. Soc. 2018, 140, 5560–5568.
- 17
- 17aA. Metzger, S. Bernhardt, G. Manolikakes, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 4665–4668;
- 17bT. Klatt, J. T. Markiewicz, C. Samann, P. Knochel, J. Org. Chem. 2014, 79, 4253–4269.
- 18Selected methods that achieve the α-C−H bond functionalization of unprotected morpholine:
- 18aD. Das, A. X. Sun, D. Seidel, Angew. Chem. Int. Ed. 2013, 52, 3765–3769;
- 18bS. Mahato, S. Haldar, C. K. Jana, Chem. Commun. 2014, 50, 332–334;
- 18cJ. Li, H. Wang, J. Sun, Y. Yang, L. Liu, Org. Biomol. Chem. 2014, 12, 2523–2527;
- 18dW. Chen, Y. Kang, R. G. Wilde, D. Seidel, Angew. Chem. Int. Ed. 2014, 53, 5179–5182;
- 18eM. Kumar, B. P. Kaur, S. S. Chimni, Chem. Eur. J. 2016, 22, 9948–9952;
- 18fA. J. J. Lennox, S. L. Goes, M. P. Webster, H. F. Koolman, S. W. Djuric, S. S. Stahl, J. Am. Chem. Soc. 2018, 140, 11227–11231;
- 18gN. Pan, J. Ling, R. Zapata, J.-P. Pulicani, L. Grimaud, M. R. Vitale, Green Chem. 2019, 21, 6194–6199.
- 19For leading studies on the C−H bond functionalization of unprotected cyclic amines (including piperazines) via hydroaminoalkylation, see:
- 19aP. R. Payne, P. Garcia, P. Eisenberger, J. C.-H. Yim, L. L. Schafer, Org. Lett. 2013, 15, 2182–2185;
- 19bR. C. DiPucchio, K. E. Lenzen, P. Daneshmand, M. B. Ezhova, L. L. Schafer, J. Am. Chem. Soc. 2021, 143, 11243–11250.
- 20
- 20aF. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969–5970;
- 20bA. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901–7902;
- 20cI. Bytschkov, H. Siebeneicher, S. Doye, Eur. J. Org. Chem. 2003, 2888–2902.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.