Rhodium(I)-Catalyzed Asymmetric Hydroarylative Cyclization of 1,6-Diynes to Access Atropisomerically Labile Chiral Dienes
Panjie Hu
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062 China
Search for more papers by this authorLingfei Hu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorDr. Xiao-Xi Li
Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237 China
Search for more papers by this authorMengxiao Pan
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062 China
Search for more papers by this authorCorresponding Author
Dr. Gang Lu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xingwei Li
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062 China
Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237 China
Search for more papers by this authorPanjie Hu
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062 China
Search for more papers by this authorLingfei Hu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorDr. Xiao-Xi Li
Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237 China
Search for more papers by this authorMengxiao Pan
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062 China
Search for more papers by this authorCorresponding Author
Dr. Gang Lu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xingwei Li
School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062 China
Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237 China
Search for more papers by this authorAbstract
Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠(rac)=26.6–28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C−H bond and the Rh−C(vinyl) bond, with subsequent C−C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202312923-sup-0001-complex_102.cif2.8 MB | Supporting Information |
ange202312923-sup-0001-complex_103.cif1.1 MB | Supporting Information |
ange202312923-sup-0001-complex_23.cif767.1 KB | Supporting Information |
ange202312923-sup-0001-complex_98.cif1.2 MB | Supporting Information |
ange202312923-sup-0001-misc_information.pdf28.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. Kuhn, in Stereochemie (Ed.: H. Freuberg), Franz Deutike, Leipzig-Wien, 1933, pp. 803–824;
- 1bAtropisomerism and Axial Chirality, (Ed.: J. M. Lassaletta), World Scientific, Singapore, 2019.
- 2For selected reviews, see:
- 2aR. Noyori, H. Takaya, Acc. Chem. Res. 1990, 23, 345–350;
- 2bJ. M. Brunel, Chem. Rev. 2007, 107, PR1–PR45;
- 2cG. Bringmann, D. Menche, Acc. Chem. Res. 2001, 34, 615–624;
- 2dM. C. Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38, 3193–3207;
- 2eG. Bringmann, T. Gulder, T. A. M. Gulder, Chem. Rev. 2011, 111, 563–639;
- 2fD. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153;
- 2gE. Kumarasamy, R. Raghunathan, M. P. Sibi, J. Sivaguru, Chem. Rev. 2015, 115, 11239–11300;
- 2hJ. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430;
- 2iY. Wang, S. Xiang, B. Tan, Application in Drugs and Materials. In Axially Chiral Compounds; (Ed.: B. Tan), Wiley, Hoboken, 2021, pp 297–315, https://doi.org/10.1002/9783527825172.ch11;
10.1002/9783527825172.ch11 Google Scholar
- 2jJ. K. Cheng, S.-H. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805–4902;
- 2kG.-J. Mei, W. L. Koay, C.-Y. Guan, Y. Lu, Chem 2022, 8, 1855–1893.
- 3Reviews on synthesis of axially chiral 6,6-biaryls:
- 3aO. Baudoin, Eur. J. Org. Chem. 2005, 4223–4229;
- 3bG. Bringmann, A. J. Price Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384–5427;
- 3cT. W. Wallace, Org. Biomol. Chem. 2006, 4, 3197–3210;
- 3dP. Loxq, E. Manoury, R. Poli, E. Deydier, A. Labande, Coord. Chem. Rev. 2016, 308, 131–190;
- 3eY.-B. Wang, B. Tan, Acc. Chem. Res. 2018, 51, 534–547;
- 3fB. Zilate, A. Castrogiovanni, C. Sparr, ACS Catal. 2018, 8, 2981–2988;
- 3gG. Liao, T. Zhou, Q.-J. Yao, B.-F. Shi, Chem. Commun. 2019, 55, 8514–8523;
- 3hG. Liao, T. Zhang, Z.-K. Lin, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 19773–19786;
- 3iJ. A. Carmona, C. Rodríguez-Franco, R. Fernández, V. Hornillos, J. M. Lassaletta, Chem. Soc. Rev. 2021, 50, 2968–2983;
- 3jQ. Yue, B. Liu, G. Liao, B.-F. Shi, ACS Catal. 2022, 12, 9359–9396.
- 4
- 4aY.-S. Jang, Ł. Woźniak, J. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 2018, 57, 12901–12905;
- 4bQ. Wang, W.-W. Zhang, H. Song, J. Wang, C. Zheng, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2020, 142, 15678–15685;
- 4cC. Pan, S.-Y. Yin, S.-B. Wang, Q. Gu, S.-L. You, Angew. Chem. Int. Ed. 2021, 60, 15510–15516;
- 4dP. Hu, L. Kong, F. Wang, X. Zhu, X. Li, Angew. Chem. Int. Ed. 2021, 60, 20424–20429;
- 4eŁ. Woźniak, N. Cramer, Angew. Chem. Int. Ed. 2021, 60, 18532–18536;
- 4fP. Hu, B. Liu, F. Wang, R. Mi, X.-X. Li, X. Li, ACS Catal. 2022, 12, 13884–13896;
- 4gW.-W. Zhang, Q. Wang, S.-Z. Zhang, C. Zheng, S.-L. You, Angew. Chem. Int. Ed. 2023, 62, e202214460.
- 5For selected reviews, see:
- 5aT.-Z. Li, S.-J. Liu, W. Tan, F. Shi, Chem. Eur. J. 2020, 26, 15779–15792;
- 5bH.-H. Zhang, F. Shi, Acc. Chem. Res. 2022, 55, 2562–2580. For selected examples, see:
- 5cL. Zhang, J. Zhang, J. Ma, D.-J. Cheng, B. Tan, J. Am. Chem. Soc. 2017, 139, 1714–1717;
- 5dM. Tian, D. Bai, G. Zheng, J. Chang, X. Li, J. Am. Chem. Soc. 2019, 141, 9527–9532;
- 5eS. Zhang, Q.-J. Yao, G. Liao, X. Li, H. Li, H.-M. Chen, X. Hong, B.-F. Shi, ACS Catal. 2019, 9, 1956–1961;
- 5fS.-C. Zheng, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2019, 58, 1494–1498;
- 5gY.-P. He, H. Wu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2020, 59, 2105–2109;
- 5hQ.-H. Nguyen, S.-M. Guo, T. Royal, O. Baudoin, N. Cramer, J. Am. Chem. Soc. 2020, 142, 2161–2167;
- 5iL. Sun, H. Chen, B. Liu, J. Chang, L. Kong, F. Wang, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2021, 60, 8391–8395;
- 5jZ.-H. Chen, T.-Z. Li, N.-Y. Wang, X.-F. Ma, S.-F. Ni, Y.-C. Zhang, F. Shi, Angew. Chem. Int. Ed. 2023, 62, e202300419.
- 6For selected reviews, see:
- 6aX. Xiao, B. Chen, Y.-P. Yao, H.-J. Zhou, X. Wang, N.-Z. Wang, F.-E. Chen, Molecules 2022, 27, 6583;
- 6bY.-J. Wu, G. Liao, B.-F. Shi, Green Synth. Catal. 2022, 3, 117–136. For selected examples, see:
- 6cS.-L. Li, C. Yang, Q. Wu, H.-L. Zheng, X. Li, J.-P. Cheng, J. Am. Chem. Soc. 2018, 140, 12836–12843;
- 6dS. Lu, S. V. H. Ng, K. Lovato, J.-Y. Ong, S. B. Poh, X. Q. Ng, L. Kürti, Y. Zhao, Nat. Commun. 2019, 10, 3061;
- 6eX. Fan, X. Zhang, C. Li, Z. Gu, ACS Catal. 2019, 9, 2286–2291;
- 6fG.-H. Yang, H. Zheng, X. Li, J.-P. Cheng, ACS Catal. 2020, 10, 2324–2333;
- 6gQ.-J. Yao, P.-P. Xie, Y.-J. Wu, Y.-L. Feng, M.-Y. Teng, X. Hong, B.-F. Shi, J. Am. Chem. Soc. 2020, 142, 18266–18276;
- 6hZ.-S. Liu, P.-P. Xie, Y. Hua, C. Wu, Y. Ma, J. Chen, H.-G. Cheng, X. Hong, Q. Zhou, Chem 2021, 7, 1917–1932;
- 6iY.-J. Wu, P.-P. Xie, G. Zhou, Q.-J. Yao, X. Hong, B.-F. Shi, Chem. Sci. 2021, 12, 9391–9397;
- 6jJ. Wang, H. Chen, L. Kong, F. Wang, Y. Lan, X. Li, ACS Catal. 2021, 11, 9151–9158;
- 6kR. Mi, Z. Ding, S. Yu, R. H. Crabtree, X. Li, J. Am. Chem. Soc. 2023, 145, 8150–8162.
- 7
- 7aJ. Clayden, C. P. Worrall, W. J. Moran, M. Helliwell, Angew. Chem. Int. Ed. 2008, 47, 3234–3237;
- 7bB. Yuan, A. Page, C. P. Worrall, F. Escalettes, S. C. Willies, J. J. W. McDouall, N. J. Turner, J. Clayden, Angew. Chem. Int. Ed. 2010, 49, 7010–7013;
- 7cL. Dai, Y. Liu, Q. Xu, M. Wang, Q. Zhu, P. Yu, G. Zhong, X. Zeng, Angew. Chem. Int. Ed. 2023, 62, e202216534;
- 7dH. Bao, Y. Chen, X. Yang, Angew. Chem. Int. Ed. 2023, 62, e202300481.
- 8For reviews, see:
- 8aC.-X. Liu, W.-W. Zhang, S.-Y. Yin, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2021, 143, 14025–14040;
- 8bZ.-H. Li, Q.-Z. Li, H.-Y. Bai, S.-Y. Zhang, Chem Catal. 2023, 3, 100594–100624.
- 9F.-T. Sheng, S.-C. Wang, J. Zhou, C. Chen, Y. Wang, S. Zhu, ACS Catal. 2023, 13, 3841–3846.
- 10For organocatalytic examples, see:
- 10aS. Jia, Z. Chen, N. Zhang, Y. Tan, Y. Liu, J. Deng, H. Yan, J. Am. Chem. Soc. 2018, 140, 7056–7060;
- 10bY. Tan, S. Jia, F. Hu, Y. Liu, L. Peng, D. Li, H. Yan, J. Am. Chem. Soc. 2018, 140, 16893–16898;
- 10cS. Li, D. Xu, F. Hu, D. Li, W. Qin, H. Yan, Org. Lett. 2018, 20, 7665–7669;
- 10dS.-C. Zheng, S. Wu, Q. Zhou, L. W. Chung, L. Ye, B. Tan, Nat. Commun. 2017, 8, 15238;
- 10eY.-B. Wang, P. Yu, Z.-P. Zhou, J. Zhang, J. Wang, S.-H. Luo, Q.-S. Gu, K. N. Houk, B. Tan, Nat. Catal. 2019, 2, 504–513;
- 10fS. Zhu, Y.-H. Chen, Y.-B. Wang, P. Yu, S.-Y. Li, S.-H. Xiang, J.-Q. Wang, J. Xiao, B. Tan, Nat. Commun. 2019, 10, 4268;
- 10gW. Zhang, S. Wei, W. Wang, J. Qu, B. Wang, Chem. Commun. 2021, 57, 6550–6553;
- 10hJ.-L. Yan, R. Maiti, S.-C. Ren, W. Tian, T. Li, J. Xu, B. Mondal, Z. Jin, Y. R. Chi, Nat. Commun. 2022, 13, 84.
- 11
- 11aD. Ji, J. Jing, Y. Wang, Z. Qi, F. Wang, X. Zhang, Y. Wang, X. Li, Chem 2022, 8, 3346–3362;
- 11bB. Cai, Y. Cui, J. Zhou, Y.-B. Wang, L. Yang, B. Tan, J. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215820.
- 12Q. Wu, Q. Zhang, S. Yin, A. Lin, S. Gao, H. Yao, Angew. Chem. Int. Ed. 2023, 62, e202305518.
- 13L. Fu, X. Chen, W. Fan, P. Chen, G. Liu, J. Am. Chem. Soc. 2023, 145, 13476–13483.
- 14W. Li, S. Chen, J. Xie, Z. Fan, K. Yang, Q. Song, Nat. Synth. 2023, 2, 140–151.
- 15
- 15aH. Song, Y. Li, Q.-J. Yao, L. Liu, Y.-H. Liu, B.-F. Shi, Angew. Chem. Int. Ed. 2020, 59, 6576–6580;
- 15bL. Jin, Q.-J. Yao, P.-P. Xie, Y. Li, B.-B. Zhan, Y.-Q. Han, X. Hong, B.-F. Shi, Chem 2020, 6, 497–511;
- 15cL. Jin, P. Zhang, Y. Li, X. Yu, B.-F. Shi, J. Am. Chem. Soc. 2021, 143, 12335–12344;
- 15dC. Yang, T.-R. Wu, Y. Li, B.-B. Wu, R.-X. Jin, D.-D. Hu, Y.-B. Li, K.-J. Bian, X.-S. Wang, Chem. Sci. 2021, 12, 3726–3732;
- 15eC. Yang, F. Li, T.-R. Wu, R. Cui, B.-B. Wu, R.-X. Li, Y. Jin, X.-S. Wang, Org. Lett. 2021, 23, 8132–8137;
- 15fC. Shen, Y. Zhu, W. Shen, S. Jin, G. Zhong, S. Luo, L. Xu, L. Zhong, J. Zhang, Org. Chem. Front. 2022, 9, 2109–2115.
- 16
- 16aR. Mi, H. Chen, X. Zhou, N. Li, D. Ji, F. Wang, Y. Lan, X. Li, Angew. Chem. Int. Ed. 2022, 61, e202111860;
- 16bX. Zhu, R. Mi, J. Yin, F. Wang, X. Li, Chem. Sci. 2023, 14, 7999–8005.
- 17
- 17aD. Mu, W. Yuan, S. Chen, N. Wang, B. Yang, L. You, B. Zu, P. Yu, C. He, J. Am. Chem. Soc. 2020, 142, 13459–13468;
- 17bY. Guo, M.-M. Liu, X. Zhu, L. Zhu, C. He, Angew. Chem. Int. Ed. 2021, 60, 13887–13891;
- 17cS.-Y. Yin, Q. Zhou, C.-X. Liu, Q. Gu, S.-L. You, Angew. Chem. Int. Ed. 2023, 62, e202305067.
- 18
- 18aF. Kakiuchi, P. Le Gendre, A. Yamada, H. Ohtaki, S. Murai, Tetrahedron: Asymmetry 2000, 11, 2647–2651;
- 18bA. Romero-Arenas, V. Hornillos, J. Iglesias-Sigüenza, R. Fernández, J. López-Serrano, A. Ros, J. M. Lassaletta, J. Am. Chem. Soc. 2020, 142, 2628–2639.
- 19
- 19aP. Vázquez-Domínguez, A. Romero-Arenas, R. Fernández, J. M. Lassaletta, A. Ros, ACS Catal. 2023, 13, 42–48;
- 19bQ. Zhou, S.-Y. Yin, D.-S. Zheng, W.-W. Zhang, S.-Z. Zhang, Q. Gu, S.-L. You, Synlett 2023, 34, 1442–1446.
- 20
- 20aQ. Wang, Z.-J. Cai, C.-X. Liu, Q. Gu, S.-L. You, J. Am. Chem. Soc. 2019, 141, 9504–9510;
- 20bN. Jacob, Y. Zaid, J. C. A. Oliveira, L. Ackermann, J. Wencel-Delord, J. Am. Chem. Soc. 2022, 144, 798–806.
- 21
- 21aK. Tanaka, Y. Otake, A. Wada, K. Noguchi, M. Hirano, Org. Lett. 2007, 9, 2203;
- 21bK. Tsuchikama, Y. Kuwata, Y.-K. Tahara, Y. Yoshinami, T. Shibata, Org. Lett. 2007, 9, 3097;
- 21cY. Kato, T. Yoshino, S. Matsunaga, ACS Catal. 2023, 13, 4552–4559.
- 22For selected reviews, see: Synthesis of Axially Chiral Compounds via [2+2+2] cycloadditions:
- 22a K. Tanaka in Transition-Metal-Mediated Aromatic Ring Construction (Ed.: K. Tanaka), Wiley, Hoboken, 2013, pp. 255–298;
10.1002/9781118629871.ch9 Google Scholar
- 22bY. Shibata, K. Tanaka, Synthesis 2012, 44, 323–350;
- 22cM. Amatore, C. Aubert, Eur. J. Org. Chem. 2015, 265–286. For selected examples, see:
- 22dK. Tanaka, G. Nishida, A. Wada, K. Noguchi, Angew. Chem. Int. Ed. 2004, 43, 6510–6512;
- 22eK. Tanaka, K. Takeishi, K. Noguchi, J. Am. Chem. Soc. 2006, 128, 4586–4587;
- 22fD. Yokose, Y. Nagashima, S. Kinoshita, J. Nogami, K. Tanaka, Angew. Chem. Int. Ed. 2022, 61, e202202542;
- 22gJ. Dong, A. Ostertag, C. Sparr, Angew. Chem. Int. Ed. 2022, 61, e202212627.
- 23
- 23aH. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc. 2014, 136, 10770–10776;
- 23bT. Shibata, Y. Matsuo, Adv. Synth. Catal. 2014, 356, 1516–1520.
- 24Deposition numbers 2285080 (for 23), 2285082 (for 99), 2285084 (for 103) and 2285083 (for 104) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 25
- 25aS. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J. Med. Chem. 2011, 54, 7005–7022;
- 25bS. R. Laplante, P. J. Edwards, L. D. Fader, A. Jakalian, O. Hucke, ChemMedChem 2011, 6, 505–531.
- 26
- 26aH. Strub, C. Strehler, J. Streith, Chem. Ber. 1987, 120, 355–363;
- 26bM. Sako, S. Ohara, K. Hirita, Y. Maki, Tetrahedron 1990, 46, 4171–4178;
- 26cK. Yasuhiko, I. Yasunori, S. Yoshihiko, T. Yumi, H. Tokunaru, Chem. Lett. 1994, 707–710.
- 27B. Wang, C. A. Pettenuzzo, J. Singh, G. E. Mccabe, L. Clark, R. Young, J. Pu, Y. Deng, ACS Catal. 2022, 12, 10441–10448.
- 28
- 28aR. Santhoshkumar, S. Mannathan, C.-H. Cheng, Org. Lett. 2014, 16, 4208–4211;
- 28bA. Whyte, A. Torelli, B. Mirabi, L. Prieto, J. F. Rodríguez, M. Lautens, J. Am. Chem. Soc. 2020, 142, 9510–9517.
- 29
- 29aR. N. Perutz, S. Sabo-Etienne, Angew. Chem. Int. Ed. 2007, 46, 2578–2592;
- 29bY. Kawaguchi, S. Yasuda, C. Mukai, Angew. Chem. Int. Ed. 2016, 55, 10473–10477;
- 29cC. P. Gordon, D. B. Culver, M. P. Conley, O. Eisenstein, R. A. Andersen, C. Copéret, J. Am. Chem. Soc. 2019, 141, 648–656;
- 29dR. N. Perutz, S. Sabo-Etienne, A. S. Weller, Angew. Chem. Int. Ed. 2022, 61, e202111462;
- 29eP. Wang, H. Wu, X.-P. Zhang, G. Huang, R. H. Crabtree, X. Li, J. Am. Chem. Soc. 2023, 145, 8417–8429.
- 30
- 30aG. Huang, Org. Lett. 2015, 17, 1994–1997;
- 30bX. Deng, L.-Y. Shi, J. Lan, Y.-Q. Guan, X. Zhang, H. Lv, L. W. Chung, X. Zhang, Nat. Commun. 2019, 10, 949;
- 30cD. Kong, H. Wu, J. Ge, Z. Shen, G. Huang, J. Org. Chem. 2022, 87, 6438–6443;
- 30dY. Ren, T. Yang, Z. Lin, Org. Chem. Front. 2023, 10, 115–126.
- 31
- 31aE. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, W. Yang, J. Am. Chem. Soc. 2010, 132, 6498–6506;
- 31bJ. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan, W. Yang, J. Chem. Theory Comput. 2011, 7, 625–632.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.