Interfacial Preparation of Polyoxometalate-Based Hybrid Supramolecular Polymers by Orthogonal Self-Assembly
Zhiqin Xia
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. Yu-Fei Song
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Shaowei Shi
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZhiqin Xia
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. Yu-Fei Song
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Shaowei Shi
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorAbstract
The construction of organic–inorganic hybrid supramolecular polymers using polyoxometalate (POM) as building block is expected to bring new opportunities to the functionalization of supramolecular polymers and the development of novel POM-based soft materials. Here, by using the orthogonal self-assembly based on host–guest interactions and metal-ligand interactions, we report the in situ construction of a novel POM-based hybrid supramolecular polymer (POM-SP) at the oil-water interface, while the redox and competitive responsiveness can be triggered independently. Moreover, the binding energy of POM-SP at the interface is sufficiently strong so that the assembly of POM-SP jams, allowing the stabilization of liquids in nonequilibrium shapes, offering the possibility of fabricating all-liquid constructs with reconfigurability.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202312187-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
ange202312187-sup-0001-Video-S8.mp48 MB | Supporting Information |
ange202312187-sup-0001-Video_S1.mp45.6 MB | Supporting Information |
ange202312187-sup-0001-Video_S2.mp43.7 MB | Supporting Information |
ange202312187-sup-0001-Video_S3.mp42.7 MB | Supporting Information |
ange202312187-sup-0001-Video_S4.mp42.8 MB | Supporting Information |
ange202312187-sup-0001-Video_S5.mp42.4 MB | Supporting Information |
ange202312187-sup-0001-Video_S6.mp49 MB | Supporting Information |
ange202312187-sup-0001-Video_S7.mp49.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Fouquey, J.-M. Lehn, A.-M. Levelut, Adv. Mater. 1990, 2, 254–257;
- 1bY. Hasegawa, M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada, Macromolecules 2005, 38, 3724–3730;
- 1cM. K. Muller, L. Brunsveld, Angew. Chem. Int. Ed. 2009, 48, 2921–2924;
- 1dH. W. Gibson, N. Yamaguchi, J. W. Jones, J. Am. Chem. Soc. 2003, 125, 3522–3533;
- 1eP. A. Korevaar, S. J. George, A. J. Markvoort, M. M. Smulders, P. A. Hilbers, A. P. Schenning, T. F. De Greef, E. W. Meijer, Nature 2012, 481, 492–496;
- 1fS. Schmatloch, A. M. J. van den Berg, A. S. Alexeev, H. Hofmeier, U. S. Schubert, Macromolecules 2003, 36, 9943–9949;
- 1gH. Hofmeier, R. Hoogenboom, M. E. L. Wouters, U. S. Schubert, J. Am. Chem. Soc. 2005, 127, 2913–2921;
- 1hM. Burnworth, L. Tang, J. R. Kumpfer, A. J. Duncan, F. L. Beyer, G. L. Fiore, S. J. Rowan, C. Weder, Nature 2011, 472, 334–337.
- 2
- 2aL. Yang, X. Tan, Z. Wang, X. Zhang, Chem. Rev. 2015, 115, 7196–7239;
- 2bY. Wang, H. Zhang, Z. Zhang, J. Zhao, R. Bai, Y. Liu, X. Zhang, X. Yan, Aggregate 2022, 3, e206.
- 3
- 3aG. R. Whittell, M. D. Hager, U. S. Schubert, I. Manners, Nat. Mater. 2011, 10, 176–188;
- 3bU. Schubert, Chem. Soc. Rev. 2011, 40, 575–582;
- 3cC. A. Fustin, P. Guillet, U. S. Schubert, J.-F. Gohy, Adv. Mater. 2007, 19, 1665–1673.
- 4
- 4aD.-L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 2010, 49, 1736–1758;
- 4bH. Li, L. Wu, Soft Matter 2014, 10, 9038–9053;
- 4cJ. M. Cameron, G. Guillemot, T. Galambos, S. S. Amin, E. Hampson, K. Mall Haidaraly, G. N. Newton, G. Izzet, Chem. Soc. Rev. 2022, 51, 293–328.
- 5
- 5aZ. He, H. Wang, Y. Wang, Y. Wu, H. Li, L. Bi, L. Wu, Soft Matter 2012, 8, 3315–3321;
- 5bZ. He, Y. Yi, B. Li, H. Ai, W. Huanbing, H. Li, L. Wu, Dalton Trans. 2012, 41, 10043–10051;
- 5cZ. He, B. Li, H. Ai, H. Li, L. Wu, Chem. Commun. 2013, 49, 8039–8041;
- 5dW. Guan, G. Wang, J. Ding, B. Li, L. Wu, Chem. Commun. 2019, 55, 10788–10791;
- 5eJ. Yuan, L. Wang, Y. Wang, S. Dong, J. Hao, Langmuir 2019, 35, 4125–4132;
- 5fJ. Yan, H. Huang, Z. Miao, Q. Zhang, Y. Yan, Macromolecules 2019, 52, 9545–9554;
- 5gN. Cheng, Y. Chen, Y. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 2020, 12, 15615–15621;
- 5hB. Gao, B. Li, L. Wu, Chem. Commun. 2021, 57, 10512–10515.
- 6
- 6aB. Qin, S. Zhang, Q. Song, Z. Huang, J.-F. Xu, X. Zhang, Angew. Chem. Int. Ed. 2017, 56, 7639–7643;
- 6bP.-Y. Gu, Y. Chai, H. Hou, G. Xie, Y. Jiang, Q.-F. Xu, F. Liu, P. D. Ashby, J.-M. Lu, T. P. Russell, Angew. Chem. Int. Ed. 2019, 58, 12112–12116.
- 7
- 7aZ. Xia, C.-G. Lin, Y. Yang, Y. Wang, Z. Wu, Y.-F. Song, T. P. Russell, S. Shi, Angew. Chem. Int. Ed. 2022, 61, e202203741;
- 7bE. C. Constable, A. J. Edwards, R. Martínez-Máñez, P. R. Raithby, A. M. W. C. Thompson, J. Chem. Soc. Dalton Trans. 1994, 645–650.
- 8
- 8aP. Pieranski, Phys. Rev. Lett. 1980, 45, 569–572;
- 8bS. Shi, T. P. Russell, Adv. Mater. 2018, 30, 1800714.
- 9
- 9aJ. Zhang, R. J. Coulston, S. T. Jones, J. Geng, O. A. Scherman, C. Abell, Science 2012, 335, 690–694;
- 9bY. Zheng, Z. Yu, R. M. Parker, Y. Wu, C. Abell, O. A. Scherman, Nat. Commun. 2014, 5, 5772.
- 10
- 10aS.-L. Li, T. Xiao, C. Lin, L. Wang, Chem. Soc. Rev. 2012, 41, 5950–5968;
- 10bP. Wei, X. Yan, F. Huang, Chem. Soc. Rev. 2015, 44, 815–832.
- 11
- 11aM. V. Rekharsky, Y. Inoue, Chem. Rev. 1998, 98, 1875–1918;
- 11bJ.-S. Wu, K. Toda, A. Tanaka, I. Sanemasa, Bull. Chem. Soc. Jpn. 1998, 71, 1615–1618.
- 12P. Yin, T. Li, R. S. Forgan, C. Lydon, X. Zuo, Z. N. Zheng, B. Lee, D. Long, L. Cronin, T. Liu, J. Am. Chem. Soc. 2013, 135, 13425–13432.
- 13M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.