Electrochemically Driven Nickel-Catalyzed Halogenation of Unsaturated Halide and Triflate Derivatives
Ming-Yu Chen
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorSylvain Charvet
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorCorresponding Author
Dr. Pierre-Adrien Payard
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorCorresponding Author
Dr. Marie-Eve L. Perrin
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorCorresponding Author
Dr. Julien C. Vantourout
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorMing-Yu Chen
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorSylvain Charvet
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorCorresponding Author
Dr. Pierre-Adrien Payard
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorCorresponding Author
Dr. Marie-Eve L. Perrin
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorCorresponding Author
Dr. Julien C. Vantourout
UMR 5246, ICBMS, Université de Lyon, Université Claude Bernard Lyon I, CNRS, INSA, CPE Lyon, 1 rue Victor Grignard, 69622 Villeurbanne cedex, France
Search for more papers by this authorAbstract
A robust electrochemically driven nickel-catalyzed halogen exchange of unsaturated halides and triflates (Br to Cl, I to Cl, I to Br, and OTf to Cl) is reported. A combination of NiCl2 ⋅ glyme as the precatalyst, 2,2′-bipyridine as a ligand, NMP as the solvent, and electrochemistry allowed the generation of a nickel species that promotes reductive elimination of the desired product. This paired electrochemical halogenation is compatible with a range of unsaturated halides and triflates, including heterocycles, dihaloarenes, and alkenes with good functional-group tolerance. Joint experimental and theoretical mechanistic investigations highlighted three catalytic events: i) oxidative addition of the aryl halide to a Ni(0) species to deliver a Ni(II) intermediate; ii) halide metathesis at Ni(II); iii) electrochemical oxidation of Ni(II) to Ni(III) to enable the formation of the desired aryl halide upon reductive elimination. This methodology allows the replacement of heavy halogens (I or Br) or polar atoms (O) with the corresponding lighter and more lipophilic Cl group to block undesired reactivity or modify the properties of drug and agrochemical candidates.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202311165-sup-0001-001_publish.cif684 KB | Supporting Information |
ange202311165-sup-0001-misc_information.pdf9.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C. Torborg, M. Beller, Adv. Synth. Catal. 2009, 351, 3027–3043.
- 2R. Wilcken, M. O. Zimmermann, A. Lange, A. C. Joerger, F. M. Boeckler, J. Med. Chem. 2013, 56, 1363–1388.
- 3W.-Y. Fang, L. Ravindar, K. P. Rakesh, H. M. Manukumar, C. S. Shantharam, N. S. Alharbi, H.-L. Qin, Eur. J. Med. Chem. 2019, 173, 117–153.
- 4J. Rayadurgam, S. Sana, M. Sasikumarc, Q. Gu, Org. Chem. Front. 2021, 8, 384–414.
- 5P. Jeschke, Eur. J. Org. Chem. 2022, e202101513.
- 6A. Biffis, P. Centomo, A. D. Zotto, M. Zecca, Chem. Rev. 2018, 118, 2249–2295.
- 7J.-Q. Xie, R.-X. Liang, Y.-X. Jia, Chin. J. Chem. 2021, 39, 710–728.
- 8F.-D. Lu, J. Chen, X. Jiang, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2021, 50, 12808–12827.
- 9N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437–3440.
- 10N. Miyaura, A. Suzuki, Chem. Commun. 1979, 866–867.
- 11I. Maluenda, O. Navarro, Molecules 2015, 20, 7528–7557.
- 12A. S. Guram, R. A. Rennels, S. L. Buchwald, Angew. Chem. Int. Ed. 1995, 34, 1348–1350.
- 13P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564–12649.
- 14J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2018, 140, 4721–4725.
- 15F. Ullmann, J. Bielecki, Ber. Dtsch. Chem. Ges. 1901, 34, 2174–2185.
- 16S. Mondal, ChemTexts 2016, 2, 17.
- 17Q. Yang, Y. Zhao, D. Ma, Org. Process Res. Dev. 2022, 26, 1690–1750.
- 18Q. Cai, W. Zhou, Chin. J. Chem. 2020, 38, 879–893.
- 19“Aromatic Halogenation” in Comprehensive Organic Transformations: A Guide to Functional Group Preparations (Ed.: R. C. Larock), VCH, Weinheim, 2018.
- 20C. A. Ramsden, D. Bellus, Science of synthesis: Houben-Weyl methods of molecular transformations, Thieme, Stuttgart, 2007.
- 21R. Akhtar, A. F. Zahoor, N. Rasool, M. Ahmad, K. Ghulam Ali, Mol. Diversity 2022, 26, 1837–1873.
- 22N. Sivendran, F. Belitz, D. S. Prendes, A. M. Martínez, R. Schmid, L. Gooßen, Chem. Eur. J. 2022, 28, e2021036.
- 23H. Finkelstein, Ber. Dtsch. Chem. Ges. 1910, 43, 1528–1532.
- 24J. A. Miller, M. J. Nunn, J. Chem. Soc. Perkin Trans. 1 1976, 416–420.
- 25R. Cramer, D. R. Coulson, J. Org. Chem. 1975, 40, 2267–2273.
- 26K. J. O'Connor, C. J. Burrows, J. Org. Chem. 1991, 56, 1344–1346.
- 27W. B. Hardy, R. B. Fortenbaugh, J. Am. Chem. Soc. 1958, 80, 1716–1718.
- 28A. Casitas, M. Canta, M. Solà, M. Costas, X. Ribas, J. Am. Chem. Soc. 2011, 133, 19386–19392.
- 29R. K. Arvela, N. E. Leadbeater, Synlett 2003, 1145–1148.
- 30X. Feng, Y. Qu, Y. Han, X. Yu, M. Bao, Y. Yamamoto, Chem. Commun. 2012, 48, 9468–9470.
- 31Y. Wang, L. Li, H. Ji, W. Ma, C. Chen, J. Zhao, Chem. Commun. 2014, 50, 2344–2346.
- 32Y. Feng, H. Luo, W. Zheng, S. Matsunaga, L. Lin, ACS Catal. 2022, 12, 11089–11096.
- 33N. Fu, G. S. Sauer, S. Lin, J. Am. Chem. Soc. 2017, 139, 15548–15553.
- 34J. S. Derrick, M. Loipersberger, R. Chatterjee, D. A. Iovan, P. T. Smith, K. Chakarawet, J. Yano, J. R. Long, M. Head-Gordon, C. J. Chang, J. Am. Chem. Soc. 2020, 142, 20489–20501.
- 35Q.-L. Yang, X.-Y. Wang, J.-Y. Lu, L.-P. Zhang, P. Fang, T.-S. Mei, J. Am. Chem. Soc. 2018, 140, 11487–11494.
- 36Z. Li, W. Sun, X. Wang, L. Li, Y. Zhang, C. Li, J. Am. Chem. Soc. 2021, 143, 3536–3543.
- 37S. Gao, C. Wang, J. Yang, J. Zhang, Nat. Commun. 2023, 14, 1301.
- 38E. Negishi, Acc. Chem. Res. 1982, 15, 340–348.
- 39S. Shi, M. Szostak, Chem. Eur. J. 2016, 22, 10420–10424.
- 40O. Hammerich, B. Speiser, Organic electrochemistry: revised and expanded, 5th ed., CRC Press, Boca Raton, 2015.
- 41A. Jutand, Chem. Rev. 2008, 108, 2300–2347.
- 42O. O. Ajani, T. K. Iyaye, O. T. Ademosuna, RSC Adv. 2022, 12, 18594–18614.
- 43T. V. Sravanthi, S. L. Manju, Eur. J. Pharm. Sci. 2016, 91, 1–10.
- 44J. L. Hofstra, K. E. Poremba, A. M. Shimozono, S. E. Reisman, Angew. Chem. Int. Ed. 2019, 58, 14901–14905.
- 45For examples of similar Ni-based complexes see:
- 45aB. J. Shields, B. Kudisch, G. D. Scholes, A. G. Doyle, J. Am. Chem. Soc. 2018, 140, 3035–3039;
- 45bP. E. Piszel, B. J. Orzolek, A. K. Olszewski, M. E. Rotella, A. M. Spiewak, M. C. Kozlowski, D. J. Weix, J. Am. Chem. Soc. 2023, 145, 8517–8528.
- 46Deposition number 2295230 contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 47S. K. Kariofillis, A. G. Doyle, Acc. Chem. Res. 2021, 54, 988–1000.
- 48Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
- 49Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 50G. M. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3–8.
- 51O. V. Dolomanov, L. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- 52CrysAlisPro (ROD), Rigaku Oxford Diffraction: Poland, 2022.
- 53G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3–8.
- 54F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- 55F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- 56M. Dolg, U. Wedig, H. Stoll, H. Preuss, J. Chem. Phys. 1987, 86, 866–872.
- 57J. M. L. Martin, A. Sundermann, J. Chem. Phys. 2001, 114, 3408–3420.
- 58A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 1993, 80, 1431–1441.
- 59L. Maron, C. Teichteil, Chem. Phys. 1998, 237, 105–122.
- 60A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- 61J. George, N. V. Sastry, J. Chem. Eng. Data 2004, 49, 235–242.
- 62The Merck index—an encyclopedia of chemicals, drugs, and biologicals; (Ed.: M. J. O'Neil), Merck and Co. Inc., Whitehouse Station, 2006.
- 63T. Vilaivan, Tetrahedron Lett. 2006, 47, 6739–6742.
- 64T. Mies, A. J. P. White, P. J. Parsons, A. G. M. Barrett, J. Org. Chem. 2021, 86, 1802–1817.
- 65L. J. Goossen, C. Linder, N. Rodríguez, P. P. Lange, Chem. Eur. J. 2009, 15, 9336–9349.
- 66G. Zhang, R.-X. Bai, C.-H. Li, C.-G. Feng, G.-Q. Lin, Tetrahedron 2019, 75, 1658–1662.
- 67A. Spaggiari, D. Vaccari, P. Davoli, G. Torre, F. Prati, J. Org. Chem. 2007, 72, 2216–2219.
- 68A. G. Martínez, A. Herrera, R. Martínez, E. Teso, A. García, J. Osío, L. Pargada, R. Unanue, L. R. Subramanian, M. Hanack, J. Heterocycl. Chem. 1988, 25, 37–1241.
- 69E. Shirakawa, F. Tamakuni, E. Kusano, N. Uchiyama, W. Konagaya, R. Watabe, Angew. Chem. Int. Ed. 2014, 53, 521–525.
- 70S. Kato, Y. Saga, M. Kojima, H. Fuse, S. Matsunaga, A. Fukatsu, M. Kondo, S. Masaoka, M. Kanai, J. Am. Chem. Soc. 2017, 139, 2204–2207.
- 71See Ref. [22]
- 72S. Das, P. Natarajan, B. Konig, Chem. Eur. J. 2017, 23, 18161–1816.
- 73S. Mukhopadhyay, S. Batra, Chem. Eur. J. 2018, 24, 14622–14626.
- 74P. J. Das, J. Das, J. Mol. Liq. 2015, 209, 94–98.
- 75R. Jia, J. Wang, Y. Jiang, B. Ni, T. Niu, Org. Biomol. Chem. 2022, 20, 8305–8312.
- 76Y. Li, H.-H. Chen, C.-F. Wang, X.-L. Xu, Y.-S. Feng, Tetrahedron Lett. 2012, 53, 5796–5799.
- 77L. Liu, J. Dong, Y. Zhang, Y. Zhou, S.-F. Yin, Org. Biomol. Chem. 2015, 13, 9948–9952.
- 78Y. Zhang, N. Hatami, N.-S. Lange, E. Ronge, W. Schilling, C. Jooss, S. Das, Green Chem. 2020, 22, 4516–4522.
- 79T. Wang, P. Rabe, C. A. Citron, J. S. Dickschat, Beilstein J. Org. Chem. 2013, 9, 2767–2777.
- 80D. A. Rogers, A. T. Bensalah, A. T. Espinosa, J. L. Hoerr, F. H. Refai, A. K. Pitzel, J. J. Alvarado, A. A. Lamar, Org. Lett. 2019, 21, 4229–4233.
- 81E. Saikia, S. J. Bora, B. Chetia, RSC Adv. 2015, 5, 102723–102726.
- 82L. Gu, Y. Zhang, J. Am. Chem. Soc. 2010, 132, 914–915.
- 83Z. Li, X. Chen, H. Zhong, Y. Lin, Y. Gao, Y. Liu, Q. Chen, Y. Huo, X. Li, Chem. Commun. 2022, 58, 13959–13962.
- 84T. Zhang, Y. Lv, Z. Zhang, Z. Jia, T.-P. Loh, Org. Lett. 2023, 25, 4468–4472.
- 85X. Ren, Q. Liu, Z. Yang, Z. Wang, X. Chen, Chin. Chem. Lett. 2023, 34, 107821.
- 86V. Ganesan, S. Moon, S. Yoon, J. Org. Chem. 2023, 88, 5127–5134.
- 87Y. Deng, X.-J. Wei, X. Wang, Y. Sun, T. Noël, Chem. Eur. J. 2019, 25, 14532–14535.
- 88C. Plaçais, S. J. Kaldas, M. Donnard, A. Panossian, D. Bernier, S. Pazenok, F. R. Leroux, Chem. Eur. J. 2023, 29, e2023014.
- 89See Ref. [44]
- 90V. P. Pavlishchuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97–102.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.