Bifunctional Iminophosphorane-Catalyzed Enantioselective Nitroalkane Addition to Unactivated α,β-Unsaturated Esters**
Daniel Rozsar
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
Search for more papers by this authorAlistair J. M. Farley
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
These authors contributed equally to this work.
Search for more papers by this authorIain McLauchlan
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
These authors contributed equally to this work.
Search for more papers by this authorBenjamin D. A. Shennan
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
Search for more papers by this authorCorresponding Author
Ken Yamazaki
Division of Applied Chemistry, Okayama University, 700-8530 Tsushimanaka, Okayama, Japan
Search for more papers by this authorCorresponding Author
Darren J. Dixon
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
Search for more papers by this authorDaniel Rozsar
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
Search for more papers by this authorAlistair J. M. Farley
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
These authors contributed equally to this work.
Search for more papers by this authorIain McLauchlan
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
These authors contributed equally to this work.
Search for more papers by this authorBenjamin D. A. Shennan
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
Search for more papers by this authorCorresponding Author
Ken Yamazaki
Division of Applied Chemistry, Okayama University, 700-8530 Tsushimanaka, Okayama, Japan
Search for more papers by this authorCorresponding Author
Darren J. Dixon
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, OX1 3TA Oxford, UK
Search for more papers by this authorA previous version of this manuscript has been deposited on a preprint server (https://doi.org/10.26434/chemrxiv-2022-w1086).
Abstract
Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,β-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including β-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202303391-sup-0001-misc_information.pdf10.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aE. N. Jacobsen, A. Pfaltz, H. Yamamoto, Comprehensive Asymmetric Catalysis, Vols. I–III, Suppl. I–II, Springer, New York, 1999;
10.1007/978-3-642-58571-5 Google Scholar
- 1bE. M. Carreira, H. Yamamoto, Comprehensive Chirality, Vols. 1–9, Elsevier Science, Amsterdam, 2012.
- 2
- 2aB. Trost, Science 1991, 254, 1471–1477;
- 2b“Asymmetric Carbon-Carbon Bond-Forming Reactions: Asymmetric Michael Reactions”: M. Kanai, M. Shibasaki, Catalytic Asymmetric Synthesis, Wiley, Hoboken, 2005, pp. 569–592;
10.1002/0471721506.ch18 Google Scholar
- 2cY. Zhang, W. Wang, Catal. Sci. Technol. 2012, 2, 42–53;
- 2dJ. P. Phelan, J. A. Ellman, Beilstein J. Org. Chem. 2016, 12, 1203–1228;
- 2eE. Reyes, U. Uria, J. L. Vicario, L. Carrillo, Org. React. 2016, 90, 1–898.
- 3R. Ballini, G. Bosica, D. Fiorini, A. Palmieri, M. Petrini, Chem. Rev. 2005, 105, 933–972.
- 4
- 4aK. Kuriyama, P. Y. Sze, Neuropharmacology 1971, 10, 103–108;
- 4bK. L. Behar, GABA Synthesis and Metabolism. Encyclopedia of Neuroscience, Elsevier, Amsterdam, 2009, pp. 433–439.
- 5
- 5aI. Lapin, CNS Drug Rev. 2006, 7, 471–481;
10.1111/j.1527-3458.2001.tb00211.x Google Scholar
- 5bI. N. Tyurenkov, L. E. Borodkina, V. V. Bagmetova, V. M. Berestovitskaya, O. S. Vasil'eva, Bull. Exp. Biol. Med. 2016, 160, 465–469;
- 5cJ. W. Romito, E. R. Turner, J. A. Rosener, L. Coldiron, A. Udipi, L. Nohrn, J. Tausiani, B. T. Romito, SAGE Open Med. 2021, 9, 205031212110221;
- 5dJ. S. W. Hong, L. Z. Atkinson, N. Al-Juffali, A. Awad, J. R. Geddes, E. M. Tunbridge, P. J. Harrison, A. Cipriani, Mol. Psychiatry 2022, 27, 1339–1349.
- 6For information on the electrophilicity parameters of various Michael-acceptors, see: D. S. Allgäuer, H. Jangra, H. Asahara, Z. Li, Q. Chen, H. Zipse, A. R. Ofial, H. Mayr, J. Am. Chem. Soc. 2017, 139, 13318–13329.
- 7
- 7aT. Gatzenmeier, M. van Gemmeren, Y. Xie, D. Höfler, M. Leutzsch, B. List, Science 2016, 351, 949–952;
- 7bT. Gatzenmeier, M. Turberg, D. Yepes, Y. Xie, F. Neese, G. Bistoni, B. List, J. Am. Chem. Soc. 2018, 140, 12671–12676.
- 8
- 8aF. López, S. R. Harutyunyan, A. Meetsma, A. J. Minnaard, B. L. Feringa, Angew. Chem. Int. Ed. 2005, 44, 2752–2756;
- 8bS. R. Harutyunyan, F. López, W. R. Browne, A. Correa, D. Peña, R. Badorrey, A. Meetsma, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2006, 128, 9103–9118;
- 8cS.-Y. Wang, S.-J. Ji, T.-P. Loh, J. Am. Chem. Soc. 2007, 129, 276–277;
- 8dT. den Hartog, S. R. Harutyunyan, D. Font, A. J. Minnaard, B. L. Feringa, Angew. Chem. Int. Ed. 2008, 47, 398–401;
- 8eL.-Y. Zhang, J.-H. Zhou, Y.-H. Xu, T.-P. Loh, Chem. Asian J. 2015, 10, 844–848;
- 8fX. Yan, S. R. Harutyunyan, Nat. Commun. 2019, 10, 3402.
- 9
- 9aY. Takaya, T. Senda, H. Kurushima, M. Ogasawara, T. Hayashi, Tetrahedron: Asymmetry 1999, 10, 4047–4056;
- 9bS. Sakuma, M. Sakai, R. Itooka, N. Miyaura, J. Org. Chem. 2000, 65, 5951–5955.
- 10K. Itoh, S. Kanemasa, J. Am. Chem. Soc. 2002, 124, 13394–13395.
- 11T. Inokuma, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2006, 128, 9413–9419.
- 12B. Vakulya, S. Varga, T. Soós, J. Org. Chem. 2008, 73, 3475–3480.
- 13T. Ogawa, S. Mouri, R. Yazaki, N. Kumagai, M. Shibasaki, Org. Lett. 2012, 14, 110–113.
- 14H. Gotoh, H. Ishikawa, Y. Hayashi, Org. Lett. 2007, 9, 5–7.
- 15K. L. Jensen, P. H. Poulsen, B. S. Donslund, F. Morana, K. A. Jørgensen, Org. Lett. 2012, 14, 1516–1519.
- 16T. Okino, Y. Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672–12673.
- 17H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906–9907.
- 18S. H. McCooey, S. J. Connon, Angew. Chem. Int. Ed. 2005, 44, 6367–6370.
- 19J. Ye, D. J. Dixon, P. S. Hynes, Chem. Commun. 2005, 4481.
- 20
- 20aA. Leyva-Pérez, P. García-García, A. Corma, Angew. Chem. Int. Ed. 2014, 53, 8687–8690;
- 20bT. Tsubogo, H. Oyamada, S. Kobayashi, Nature 2015, 520, 329–332;
- 20cH. Ishitani, Y. Saito, T. Tsubogo, S. Kobayashi, Org. Lett. 2016, 18, 1346–1349;
- 20dH. Ishitani, K. Kanai, W. Yoo, T. Yoshida, S. Kobayashi, Angew. Chem. Int. Ed. 2019, 58, 13313–13317;
- 20eS. B. Ötvös, P. Llanes, M. A. Pericàs, C. O. Kappe, Org. Lett. 2020, 22, 8122–8126;
- 20fB. S. Nagy, P. Llanes, M. A. Pericas, C. O. Kappe, S. B. Ötvös, Org. Lett. 2022, 24, 1066–1071.
- 21
- 21aR. Lucius, R. Loos, H. Mayr, Angew. Chem. Int. Ed. 2002, 41, 91–95;
- 21bT. Bug, T. Lemek, H. Mayr, J. Org. Chem. 2004, 69, 7565–7576;
- 21cI. Zenz, H. Mayr, J. Org. Chem. 2011, 76, 9370–9378.
- 22W. J. Nodes, D. R. Nutt, A. M. Chippindale, A. J. A. Cobb, J. Am. Chem. Soc. 2009, 131, 16016–16017.
- 23
- 23aZ. Glasovac, M. Eckert-Maksić, Z. B. Maksić, New J. Chem. 2009, 33, 588–597;
- 23bW. S. Matthews, J. E. Bares, J. E. Bartmess, F. G. Bordwell, F. J. Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J. McCollum, N. R. Vanier, J. Am. Chem. Soc. 1975, 97, 7006–7014;
- 23cW. N. Olmstead, F. G. Bordwell, J. Org. Chem. 1980, 45, 3299–3305.
- 24For information about superbases, see:
- 24aC. Palomo, M. Oiarbide, R. López, Chem. Soc. Rev. 2009, 38, 632–653;
- 24bT. Ishikawa, Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts, Wiley, Chichester, 2009;
10.1002/9780470740859 Google Scholar
- 24cH. Krawczyk, M. Dzięgielewski, D. Deredas, A. Albrecht, Ł. Albrecht, Chem. Eur. J. 2015, 21, 10268–10277;
- 24dB. Teng, W. Lim, C.-H. Tan, Synlett 2017, 28, 1272–1277;
- 24eS. Dong, X. Feng, X. Liu, Chem. Soc. Rev. 2018, 47, 8525–8540;
- 24fY. Wang, Z. Cao, Q. Li, G. Lin, J. Zhou, P. Tian, Angew. Chem. Int. Ed. 2020, 59, 8004–8014;
- 24gA. Kondoh, M. Terada, Bull. Chem. Soc. Jpn. 2021, 94, 339–356.
- 25For representative papers in organic superbase catalysis, see:
- 25aE. J. Corey, M. J. Grogan, Org. Lett. 1999, 1, 157–160;
- 25bM. Terada, H. Ube, Y. Yaguchi, J. Am. Chem. Soc. 2006, 128, 1454–1455;
- 25cD. Leow, S. Lin, S. K. Chittimalla, X. Fu, C.-H. Tan, Angew. Chem. Int. Ed. 2008, 47, 5641–5645;
- 25dD. Uraguchi, T. Ooi, J. Synth. Org. Chem. Jpn. 2010, 68, 1185–1194;
- 25eS. Dong, X. Liu, X. Chen, F. Mei, Y. Zhang, B. Gao, L. Lin, X. Feng, J. Am. Chem. Soc. 2010, 132, 10650–10651;
- 25fY. Yang, S. Dong, X. Liu, L. Lin, X. Feng, Chem. Commun. 2012, 48, 5040;
- 25gB. Cho, C.-H. Tan, M. W. Wong, J. Org. Chem. 2012, 77, 6553–6562;
- 25hJ. S. Bandar, T. H. Lambert, J. Am. Chem. Soc. 2012, 134, 5552–5555;
- 25iT. Takeda, M. Terada, J. Am. Chem. Soc. 2013, 135, 15306–15309;
- 25jD. Uraguchi, K. Yoshioka, T. Ooi, Nat. Commun. 2017, 8, 14793;
- 25kH. Shi, I. N. Michaelides, B. Darses, P. Jakubec, Q. N. N. Nguyen, R. S. Paton, D. J. Dixon, J. Am. Chem. Soc. 2017, 139, 17755–17758;
- 25lA. Kondoh, M. Oishi, H. Tezuka, M. Terada, Angew. Chem. Int. Ed. 2020, 59, 7472–7477;
- 25mA. Kondoh, S. Ishikawa, M. Terada, J. Am. Chem. Soc. 2020, 142, 3724–3728.
- 26For the seminal paper on BIMP catalysis, see: M. G. Núñez, A. J. M. Farley, D. J. Dixon, J. Am. Chem. Soc. 2013, 135, 16348–16351.
- 27For a review on BIMP catalysis, see: M. Formica, D. Rozsar, G. Su, A. J. M. Farley, D. J. Dixon, Acc. Chem. Res. 2020, 53, 2235–2247.
- 28For conjugate additions catalyzed by BIMPs, see:
- 28aA. J. M. Farley, C. Sandford, D. J. Dixon, J. Am. Chem. Soc. 2015, 137, 15992–15995;
- 28bM. A. Horwitz, J. L. Fulton, J. S. Johnson, Org. Lett. 2017, 19, 5783–5785;
- 28cJ. Yang, A. J. M. Farley, D. J. Dixon, Chem. Sci. 2017, 8, 606–610;
- 28dA. J. M. Farley, P. Jakubec, A. M. Goldys, D. J. Dixon, Tetrahedron 2018, 74, 5206–5212;
- 28eJ. L. Fulton, M. A. Horwitz, E. L. Bruske, J. S. Johnson, J. Org. Chem. 2018, 83, 3385–3391;
- 28fM. Formica, G. Sorin, A. J. M. Farley, J. Díaz, R. S. Paton, D. J. Dixon, Chem. Sci. 2018, 9, 6969–6974;
- 28gG. Su, C. J. Thomson, K. Yamazaki, D. Rozsar, K. E. Christensen, T. A. Hamlin, D. J. Dixon, Chem. Sci. 2021, 12, 6064–6072;
- 28hD. Rozsar, M. Formica, K. Yamazaki, T. A. Hamlin, D. J. Dixon, J. Am. Chem. Soc. 2022, 144, 1006–1015;
- 28iP. de Jesús Cruz, W. R. Cassels, C. Chen, J. S. Johnson, Science 2022, 376, 1224–1230.
- 29See Supporting Information for further details.
- 30Interestingly, when the catalyst loading was increased to 15 mol % from 10 mol %, the reaction mixture became homogeneous.
- 31For reviews about stereoselective synthesis of fluorine containing molecules, see:
- 31aG. Valero, X. Companyó, R. Rios, Chem. Eur. J. 2011, 17, 2018–2037;
- 31bP. H. S. Paioti, S. A. Gonsales, S. Xu, A. Nikbakht, D. C. Fager, Q. Liu, A. H. Hoveyda, Angew. Chem. Int. Ed. 2022, 61, e202208742.
- 32D. Ghislieri, K. Gilmore, P. H. Seeberger, Angew. Chem. Int. Ed. 2014, 53, 678–682.
- 33F. Felluga, V. Gombac, G. Pitacco, E. Valentin, Tetrahedron: Asymmetry 2005, 16, 1341–1345.
- 34
- 34aR. D. Barnes, M. W.Wood-Kaczmar, A. D. Curzons, I. R. Lynch, J. E. Richardson, P. C. Buxton, U.S. Patent 24721723, 1986;
- 34bM. S. Yu, I. Lantos, Z.-Q. Peng, J. Yu, T. Cacchio, Tetrahedron Lett. 2000, 41, 5647–5651;
- 34cP. S. Hynes, P. A. Stupple, D. J. Dixon, Org. Lett. 2008, 10, 1389–1391.
- 35R. Tomar, D. Bhattacharya, S. A. Babu, Tetrahedron 2019, 75, 2447–2465.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.