Interaction between Divalent Copper Fluoride and Carboxamide Group Enabling Stereoretentive Fluorination of Tertiary Alkyl Halides
Naoki Tsuchiya
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorTetsuhiro Yamamoto
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorHiroki Akagawa
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Takashi Nishikata
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorNaoki Tsuchiya
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorTetsuhiro Yamamoto
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorHiroki Akagawa
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Takashi Nishikata
Graduate School of Science and Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi, 755-8611 Japan
Search for more papers by this authorAbstract
Herein, we report a copper-catalyzed stereospecific fluorination involving CsF and α-bromocarboxamides as tertiary alkyl sources that, unlike traditional stereospecific routes involving stereoinversive SN2 reactions, proceeds with retention of stereochemistry. The developed stereospecific Cu-catalyzed reaction is among the most efficient methods for synthesizing fluorinated molecules that possess highly congested stereogenic carbon centers. Mechanistic studies revealed that the combined reactivity of CuF2 and Cs salt is essential for completing the catalytic cycle. Our catalytic system underwent fluorination exclusively with tertiary alkyl bromides and did not react with primary alkyl bromides, indicating that this stereospecific fluorination methodology is suitable for synthesizing fluorinated building blocks possessing stereo-defined F-containing tertiary carbon stereogenic center.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202301343-sup-0001-misc_information.pdf10.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For recent reviews, see:
- 1aC.-Y. Wang, J. Derosa, M. R. Biscoe, Chem. Sci. 2015, 6, 5105–5113;
- 1bE. J. Tollefson, L. E. Hanna, E. R. Jarvo, Acc. Chem. Res. 2015, 48, 2344–2353;
- 1cD. Leonori, V. K. Aggarwal, Angew. Chem. Int. Ed. 2015, 54, 1082–1096;
- 1dV. Lanke, I. Marek, Chem. Sci. 2020, 11, 9378–9385;
- 1eY. Takeda, W. M. C. Sameera, S. Minakata, Acc. Chem. Res. 2020, 53, 1686–1702;
- 1fJ. Xu, O. P. Bercher, M. R. Talley, M. P. Watson, ACS Catal. 2021, 11, 1604–1612;
- 1gX. Zhang, C. H. Tan, Chem 2021, 7, 1451–1486.
- 2
- 2aD. O'Hagan, Chem. Soc. Rev. 2008, 37, 308–319;
- 2bT. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470–477;
- 2cT. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264;
- 2dT. Dong, G. C. Tsui, Chem. Rec. 2021, 21, 4015–4031.
- 3
- 3aK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 3bJ. Wang, M. Sánchez-Roselló, J. L. Aceña, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014, 114, 2432–2506;
- 3cM. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633–10640;
- 3dY. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience 2020, 23, 101467.
- 4For selected pioneering examples, see:
- 4aL. Hintermann, A. Togni, Angew. Chem. Int. Ed. 2000, 39, 4359–4362;
10.1002/1521-3773(20001201)39:23<4359::AID-ANIE4359>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 4bY. Hamashima, K. Yagi, H. Takano, L. Tamas, M. Sodeoka, J. Am. Chem. Soc. 2002, 124, 14530–14531;
- 4cN. Shibata, J. Kohno, K. Takai, T. Ishimaru, S. Nakamura, T. Toru, S. Kanemasa, Angew. Chem. Int. Ed. 2005, 44, 4204–4207;
- 4dX. Yang, R. J. Phipps, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5225–5228.
- 5
- 5aP. Kirsch, in Modern fluoroorganic chemistry, Wiley-VCH, Weinheim, 2004;
- 5bX. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826–870.
- 6For reviews on deoxyfluorination, see:
- 6aR. P. Singh, J. M. Shreeve, Synthesis 2002, 2561–2578;
- 6bC. Hollingworth, V. Gouverneur, Chem. Commun. 2012, 48, 2929–2942;
- 6cJ. Wu, Tetrahedron Lett. 2014, 55, 4289–4294;
- 6dC. Ni, M. Hu, J. Hu, Chem. Rev. 2015, 115, 765–825;
- 6eP. A. Champagne, J. Desroches, J. D. Hamel, M. Vandamme, J. F. Paquin, Chem. Rev. 2015, 115, 9073–9174;
- 6fW.-L. Hu, X.-G. Hu, L. Hunter, Synthesis 2017, 49, 4917–4930.
- 7C. Sandford, R. Rasappan, V. K. Aggarwal, J. Am. Chem. Soc. 2015, 137, 10100–10103.
- 8D. O'Hagan, J. Fluorine Chem. 2010, 131, 1071–1081.
- 9For stereoinversive fluorinations, see:
- 9aK. Shibatomi, Y. Soga, A. Narayama, I. Fujisawa, S. Iwasa, J. Am. Chem. Soc. 2012, 134, 9836–9839;
- 9bS. Hajra, A. Hazra, P. Mandal, Org. Lett. 2018, 20, 6471–6475;
- 9cC. Mairhofer, V. Haider, T. Bögl, M. Waser, Org. Biomol. Chem. 2021, 19, 162–165;
- 9dS. Mizuta, K. Kitamura, A. Kitagawa, T. Yamaguchi, T. Ishikawa, Chem. Eur. J. 2021, 27, 5930–5935.
- 10J. Wachtmeister, A. Mühlman, B. Classon, B. Samuelsson, Tetrahedron 1999, 55, 10761–10770.
- 11V. Lanke, I. Marek, J. Am. Chem. Soc. 2020, 142, 5543–5548.
- 12G. Hirata, K. Takeuchi, Y. Shimoharai, M. Sumimoto, H. Kaizawa, T. Nokami, T. Koike, M. Abe, E. Shirakawa, T. Nishikata, Angew. Chem. Int. Ed. 2021, 60, 4329–4334.
- 13H. Akagawa, N. Tsuchiya, A. Morinaga, Y. Katayama, M. Sumimoto, T. Nishikata, ACS Catal. 2022, 12, 9831–9838.
- 14T. Nishikata, S. Ishida, R. Fujimoto, Angew. Chem. Int. Ed. 2016, 55, 10008–10012.
- 15
- 15aP. G. Stevens, N. L. McNiven, J. Am. Chem. Soc. 1939, 61, 1295–1296;
- 15bC. A. Bunton, E. D. Hughes, C. K. Ingold, D. F. Meigh, Nature 1950, 166, 680.
- 16
- 16aN. V. Tsarevsky, K. Matyjaszewski, Chem. Rev. 2007, 107, 2270–2299;
- 16bW. T. Eckenhoff, T. Pintauer, Catal. Rev. Sci. Eng. 2010, 52, 1–59.
- 17
- 17aT. Nishikata, Y. Noda, R. Fujimoto, T. Sakashita, J. Am. Chem. Soc. 2013, 135, 16372–16375;
- 17bT. Nishikata, S. Ishikawa, Synlett 2015, 26, 716–724.
- 18X. Lin, Z. Weng, Dalton Trans. 2015, 44, 2021–2037.
- 19H. Chen, Z. Liu, Y. Lv, X. Tan, H. Shen, H.-Z. Yu, C. Li, Angew. Chem. Int. Ed. 2017, 56, 15411–15415.
- 20Deposition Numbers 2167783 (for 1y) and 2196159 (for 2y) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 21A. B. Pinkerton, S. Peddibhotla, F. Yamamoto, L. M. Slosky, Y. Bai, P. Maloney, P. Hershberger, M. P. Hedrick, B. Falter, R. J. Ardecky, L. H. Smith, T. D. Y. Chung, M. R. Jackson, M. G. Caron, L. S. Barak, J. Med. Chem. 2019, 62, 8357–8363.
- 22J. Emsley, The Elements, 3rd ed., Oxford University Press, Oxford, 1998.
- 23K. González Arzola, M. C. Arévalo, M. A. Falcón, Electrochim. Acta 2009, 54, 2621–2629.
- 24J. C. Sheehan, I. Lengyel, J. Am. Chem. Soc. 1964, 86, 1356–1359.
- 25C. S. Jeffrey, K. L. Barnes, J. A. Eickhoff, C. R. Carson, J. Am. Chem. Soc. 2011, 133, 7688–7691.
- 26J. K. Bower, A. D. Cypcar, B. Henriquez, S. C. E. Stieber, S. Zhang, J. Am. Chem. Soc. 2020, 142, 8514–8521.
- 27C. Fang, M. Fantin, X. Pan, K. de Fiebre, M. L. Coote, K. Matyjaszewski, P. Liu, J. Am. Chem. Soc. 2019, 141, 7486–7497.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.