Nickel-Catalyzed Defluorinative Asymmetric Cyclization of Fluoroalkyl-Substituted 1,6-Enynes for the Synthesis of Seletracetam
Dr. Kuai Wang
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jiachang Chen
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorWenfeng Liu
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Wangqing Kong
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
Search for more papers by this authorDr. Kuai Wang
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jiachang Chen
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorWenfeng Liu
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Wangqing Kong
The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072 People's Republic of China
Search for more papers by this authorAbstract
The introduction of fluorine-containing groups into organic molecules can significantly affect their physical and chemical properties and has long been used as an effective strategy for drug discovery and development. Consequently, the development of catalytic asymmetric methods for the synthesis of fluorine-containing heterocycles is highly desirable and sought after. Herein, we describe a nickel-catalyzed defluorinative asymmetric cyclization of fluoroalkyl-substituted 1,6-enynes, providing an expedient access to synthetically attractive 4-fluorovinyl-substituted 2-pyrrolidones in good yields with remarkable high levels of chemo-, regio-, and enantioselectivities (90–99 % ee,>35 examples). This protocol features readily available starting materials and excellent functional group compatibility, and exhibits complementary regioselectivity. The utility of this strategy was demonstrated in the enantioselective synthesis of the antiepileptic drug Seletracetam.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212664-sup-0001-3aa.cif258 KB | Supporting Information |
ange202212664-sup-0001-misc_information.pdf13.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Purser, P. R. Moore, S. Swallow, V. Governeur, Chem. Soc. Rev. 2008, 37, 320–330;
- 1bK. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881–1886;
- 1cT. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214–8264; Angew. Chem. 2013, 125, 8372–8423;
- 1dW. K. Hagmann, J. Med. Chem. 2008, 51, 4359–4369;
- 1eD. O'Hagan, H. Deng, Chem. Rev. 2015, 115, 634–649.
- 2
- 2aJ. R. Pollard, Curr. Opin. Invest. Drugs 2008, 9, 101–107;
- 2bX. Yang, A. L. Meehan, S. M. Rothman, J. M. Dubinsky, Epilepsy Res. 2015, 117, 17–22;
- 2cC. J. Maring, V. S. Stoll, C. Zhao, M. Sun, A. C. Krueger, K. D. Stewart, D. L. Madigan, W. M. Kati, Y. Xu, R. J. Carrick, D. A. Montgomery, A. Kempf-Grote, K. C. Marsh, A. Molla, K. R. Steffy, H. L. Sham, W. Graeme Laver, Y. Gu, D. J. Kempf, W. E. Kohlbrenner, J. Med. Chem. 2005, 48, 3980–3990.
- 3
- 3aB. Bennett, A. Matagne, P. Michel, M. Leonard, M. Cornet, M.-A. Meeus, N. Toublanc, Neurotherapeutics 2007, 4, 117–122;
- 3bA. Matagne, D. G. Margineanu, H. Potschka, W. Löscher, P. Michel, B. Kenda, H. Klitgaard, Eur. J. Pharmacol. 2009, 614, 30–37;
- 3cG. Martella, P. Bonsi, G. Sciamanna, P. Platania, G. Madeo, A. Tassone, D. Cuomo, A. Pisani, Epilepsia 2009, 50, 702–710.
- 4
- 4aC. Ates, F. Lurquin, Y. Quesnel, A. School, 4-substituted-pyrrolidin-2-ones and their use, WO2007031263 A1, 22 March, 2007;
- 4bF. Lurquin, F. Driessens, M. Callaert, Process for preparing 2-oxo-1-pyrrolidine derivatives, WO 2005121082 A1, 22 December, 2005;
- 4cE. Differding, B. Kenda, B. Lallemand, A. Matagne, P. Michel, P. Pasau, P. Talaga, 2-Oxo-1-pyrrolidine derivatives, processes for preparing them and their uses, WO 2001062726A2, 30 August, 2001.
- 5Recent reviews on C−F bond activation via β-fluorine elimination, see:
- 5aM. Drouin, J.-D. Hamel, J.-F. Paquin, Synlett 2016, 27, 821–830;
- 5bX. Zhang, S. Cao, Tetrahedron Lett. 2017, 58, 375–392;
- 5cM. Drouin, J.-D. Hamel, J.-F. Paquin, Synthesis 2018, 50, 881–955;
- 5dJ.-D. Hamel, J.-F. Paquin, Chem. Commun. 2018, 54, 10224–10239;
- 5eT. Fujita, K. Fuchibe, J. Ichikawa, Angew. Chem. Int. Ed. 2019, 58, 390–402; Angew. Chem. 2019, 131, 396–408;
- 5fX. Zhang, Y. Cheng, X. Zhao, Z. Cao, X. Xiao, Y. Xu, Org. Chem. Front. 2021, 8, 2315–2327;
- 5gM. Wang, Z. Shi, Chem. Lett. 2021, 50, 553–559. For prominent examples, see:
- 5hM. Takachi, Y. Kita, M. Tobisu, Y. Fukumoto, N. Chatani, Angew. Chem. Int. Ed. 2010, 49, 8717–8720; Angew. Chem. 2010, 122, 8899–8902;
- 5iX. Pigeon, M. Bergeron, F. Barabe, P. Dube, H. N. Frost, J.-F. Paquin, Angew. Chem. Int. Ed. 2010, 49, 1123–1127; Angew. Chem. 2010, 122, 1141–1145;
- 5jR. Corberán, N. W. Mszar, A. H. Hoveyda, Angew. Chem. Int. Ed. 2011, 50, 7079–7082; Angew. Chem. 2011, 123, 7217–7220;
- 5kM. Bergeron, D. Guyader, J.-F. Paquin, Org. Lett. 2012, 14, 5888–5891;
- 5lT. Ichitsuka, T. Fujita, T. Arita, J. Ichikawa, Angew. Chem. Int. Ed. 2014, 53, 7564–7568; Angew. Chem. 2014, 126, 7694–7698;
- 5mT. Ichitsuka, T. Fujita, J. Ichikawa, ACS Catal. 2015, 5, 5947–5950;
- 5nR. T. Thornbury, F. D. Toste, Angew. Chem. Int. Ed. 2016, 55, 11629–11632; Angew. Chem. 2016, 128, 11801–11804;
- 5oY. Watabe, K. Kanazawa, T. Fujita, J. Ichikawa, Synthesis 2017, 49, 3569–3575;
- 5pM. Drouin, S. Tremblay, J.-F. Paquin, Org. Biomol. Chem. 2017, 15, 2376–2384;
- 5qY. Liu, Y. Zhou, Y. Zhao, J. Qu, Org. Lett. 2017, 19, 946–949;
- 5rJ. Zhang, W. Dai, Q. Liu, S. Cao, Org. Lett. 2017, 19, 3283–3286;
- 5sJ. Hu, X. Han, Y. Yuan, Z. Shi, Angew. Chem. Int. Ed. 2017, 56, 13342–13346; Angew. Chem. 2017, 129, 13527–13531;
- 5tH. Sakaguchi, Y. Uetake, M. Ohashi, T. Niwa, S. Ogoshi, T. Hosoya, J. Am. Chem. Soc. 2017, 139, 12855–12862;
- 5uR. Kojima, K. Kubota, H. Ito, Chem. Commun. 2017, 53, 10688–10691;
- 5vH. Sakaguchi, M. Ohashi, S. Ogoshi, Angew. Chem. Int. Ed. 2018, 57, 328–332; Angew. Chem. 2018, 130, 334–338.
- 6Y. Huang, T. Hayashi, J. Am. Chem. Soc. 2016, 138, 12340–12343.
- 7Y. J. Jang, D. Rose, B. Mirabi, M. Lautens, Angew. Chem. Int. Ed. 2018, 57, 16147–16151; Angew. Chem. 2018, 130, 16379–16383.
- 8M. Wang, X. Pu, Y. Zhao, P. Wang, Z. Li, C. Zhu, Z. Shi, J. Am. Chem. Soc. 2018, 140, 9061–9065.
- 9
- 9aR. Kojima, S. Akiyama, H. Ito, Angew. Chem. Int. Ed. 2018, 57, 7196–7199; Angew. Chem. 2018, 130, 7314–7317;
- 9bP. Gao, C. Yuan, Y. Zhao, Z. Shi, Chem 2018, 4, 2201–2211;
- 9cS. Akiyama, K. Kubota, M. S. Mikus, P. H. S. Paioti, F. Romiti, Q. Liu, Y. Zhou, A. H. Hoveyda, H. Ito, Angew. Chem. Int. Ed. 2019, 58, 11998–12003; Angew. Chem. 2019, 131, 12126–12131.
- 10
- 10aP. H. S. Paioti, J. Pozo, M. S. Mikus, J. Lee, M. J. Koh, F. Romiti, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2019, 141, 19917–19934;
- 10bP. Gao, L. Gao, L. Xi, Z. Zhang, S. Li, Z. Shi, Org. Chem. Front. 2020, 7, 2618–2627;
- 10cP. Gao, G. Wang, L. Xi, M. Wang, S. Li, Z. Shi, Chin. J. Chem. 2019, 37, 1009–1014;
- 10dG. Coates, H. Y. Tan, C. Kalff, A. J. P. White, M. R. Crimmin, Angew. Chem. Int. Ed. 2019, 58, 12514–12518; Angew. Chem. 2019, 131, 12644–12648.
- 11J. Corpas, P. Mauleón, R. G. Arrayás, J. C. Carretero, ACS Catal. 2021, 11, 7513–7551.
- 12
- 12aQ. Zhang, X. Lu, J. Am. Chem. Soc. 2000, 122, 7604–7605;
- 12bK. Shen, X. Han, X. Lu, Z. Hu, Tetrahedron Lett. 2017, 58, 3768–3771;
- 12cG. Zhang, Z. Zhang, Org. Lett. 2003, 5, 3645–3648.
- 13
- 13aT. Miura, M. Shimada, M. Murakami, J. Am. Chem. Soc. 2005, 127, 1094–1095;
- 13bT. Miura, M. Shimada, M. Murakami, Chem. Asian J. 2006, 1, 868–877;
- 13cM. Shimada, T. Harumashi, T. Miura, M. Murakami, Chem. Asian J. 2008, 3, 1035–1040.
- 14C. Yap, G. M. J. Lenagh-Snow, S. N. Karad, W. Lewis, L. J. Diorazio, H. W. Lam, Angew. Chem. Int. Ed. 2017, 56, 8216–8220; Angew. Chem. 2017, 129, 8328–8332.
- 15Selected examples on nickel-catalyzed defluorinative cross-couplings see:
- 15aX. Lu, Y. Wang, B. Zhang, J.-J. Pi, X.-X. Wang, T.-J. Gong, B. Xiao, Y. Fu, J. Am. Chem. Soc. 2017, 139, 12632–12637;
- 15bY. Lan, F. Yang, C. Wang, ACS Catal. 2018, 8, 9245–9251;
- 15cX. Lu, X. Wang, T. Gong, J. Pi, S. He, Y. Fu, Chem. Sci. 2019, 10, 809–814;
- 15dZ. Lin, Y. Lan, C. Wang, ACS Catal. 2019, 9, 775–780;
- 15eC. Yao, S. Wang, J. Norton, M. Hammond, J. Am. Chem. Soc. 2020, 142, 4793–4799;
- 15fF. Chen, X. Xu, Y. He, G. Huang, S. Zhu, Angew. Chem. Int. Ed. 2020, 59, 5398–5402; Angew. Chem. 2020, 132, 5436–5440;
- 15gC. Zhu, Z. Liu, L. Tang, H. Zhang, Y. Zhang, P. Walsh, C. Feng, Nat. Commun. 2020, 11, 4860;
- 15hQ. Pan, Y. Ping, Y. Wang, Y. Guo, W. Kong, J. Am. Chem. Soc. 2021, 143, 10282–10291;
- 15iY. Ping, X. Li, Q. Pan, W. Kong, Angew. Chem. Int. Ed. 2022, 61, e202201574; Angew. Chem. 2022, 134, e202201574;
- 15jY. Ping, Q. Pan, Y. Guo, Y. Liu, X. Li, M. Wang, W. Kong, J. Am. Chem. Soc. 2022, 144, 11626–11637;
- 15kT. Ma, X. Li, Y. Ping, W. Kong, Chin. J. Chem. 2022, 40, 2212–2218.
- 16For selected reviews on Ni-catalyzed anti-carbometallative cyclizations, see:
- 16aS. E. Bottcher, L. E. Hutchinson, D. J. Wilger, Synthesis 2020, 52, 2807–2820;
- 16bW. Liu, W. Kong, Org. Chem. Front. 2020, 7, 3941–3955;
- 16cS. M. Gillbard, H. W. Lam, Chem. Eur. J. 2022, 28, e202104230. For selected examples, see:
- 16dC. Clarke, C. A. Incerti-Pradillos, H. W. Lam, J. Am. Chem. Soc. 2016, 138, 8068–8071;
- 16eX. Zhang, X. Xie, Y. Liu, Chem. Sci. 2016, 7, 5815–5820;
- 16fS. N. Karad, H. Panchal, C. Clarke, W. Lewis, H. W. Lam, Angew. Chem. Int. Ed. 2018, 57, 9122–9125; Angew. Chem. 2018, 130, 9260–9263;
- 16gS. M. Gillbard, C.-H. Chung, S. N. Karad, H. Panchal, W. Lewis, H. W. Lam, Chem. Commun. 2018, 54, 11769–11772;
- 16hG. R. Kumar, R. Kumar, M. Rajesh, M. S. Reddy, Chem. Commun. 2018, 54, 759–762;
- 16iN. Iqbal, N. Iqbal, D. Maiti, E. J. Cho, Angew. Chem. Int. Ed. 2019, 58, 15808–15812; Angew. Chem. 2019, 131, 15955–15959;
- 16jZ. Zhou, W. Liu, W. Kong, Org. Lett. 2020, 22, 6982–6987;
- 16kZ. Zhou, J. Chen, H. Chen, W. Kong, Chem. Sci. 2020, 11, 10204–10211;
- 16lR. Di Sanza, T. L. N. Nguyen, N. Iqbal, S. P. Argent, W. Lewis, H. W. Lam, Chem. Sci. 2020, 11, 2401–2406;
- 16mS. M. Gillbard, H. Green, S. P. Argent, H. W. Lam, Chem. Commun. 2021, 57, 4436–4439;
- 16nH. Green, S. P. Argent, H. W. Lam, Chem. Eur. J. 2021, 27, 5897–5900;
- 16oK. H. Min, N. Iqbal, E. J. Cho, Org. Lett. 2022, 24, 989–994;
- 16pZ. Lu, X. Hu, H. Zhang, X. Zhang, J. Cai, M. Usman, H. Cong, W.-B. Liu, J. Am. Chem. Soc. 2020, 142, 7328–7333;
- 16qS. D. Tambe, C. H. Ka, H. S. Hwang, J. Bae, N. Iqbal, E. J. Cho, Angew. Chem. Int. Ed. 2022, 61, e202203494; Angew. Chem. 2022, 134, e202203494.
- 17Deposition Number 2171668 (3 aa) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 18
- 18aG. Landelle, M. Bergeron, M. O. Turcotte-Savard, J. F. Paquin, Chem. Soc. Rev. 2011, 40, 2867–2908;
- 18bP. A. Champagne, J. Desroches, J.-D. Hamel, M. Vandamme, J.-F. Paquin, Chem. Rev. 2015, 115, 9073–9174;
- 18cX. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826–870;
- 18dS. Fustero, D. M. Sedgwick, R. Roman, P. Barrio, Chem. Commun. 2018, 54, 9706–9725.
- 19B. Wang, X. Zhao, Q. Liu, S. Cao, Org. Biomol. Chem. 2018, 16, 8546–8552.
- 20M. Suda, Tetrahedron Lett. 1980, 21, 2555–2556.
- 21K. Benoît, M. Philippe, Q. Yannick, Imidazole derivatives, Processes for preparing them and their uses, WO2005/054188 A1, 16 June, 2005.
- 22M. M. Pichon, F. Stauffert, L. G. Addante-Moya, A. Bodlenner, P. Compain, Eur. J. Org. Chem. 2018, 1538–1545.
- 23K. Moriyama, Y. Nakamura, H. Togo, Org. Lett. 2014, 16, 3812–3815.
- 24Q. Lin, X. Xu, F. Qing, Org. Biomol. Chem. 2015, 13, 8740–8749.
- 25F. Boschi, P. Camps, M. Comes-Franchini, D. Muñoz-Torrero, A. Riccib, L. Sánchez, Tetrahedron: Asymmetry 2005, 16, 3739–3745.
- 26
- 26aY. Shen, Y. Gu, R. Martin, J. Am. Chem. Soc. 2018, 140, 12200–12209;
- 26bJ. Chen, Y. Wang, Z. Ding, W. Kong, Nat. Commun. 2020, 11, 1882.
- 27For selected examples on 1,6-enyne cyclization, see:
- 27aJ. Marco-Martínez, V. López-Carrillo, E. Buñuel, R. Simancas, D. J. Cárdenas, J. Am. Chem. Soc. 2007, 129, 1874–1875;
- 27bC. M. Yang, S. Mannathan, C. H. Cheng, Chem. Eur. J. 2013, 19, 12212–12216;
- 27cZ.-T. He, B. Tian, Y. Fukui, X. Tong, P. Tian, G.-Q. Lin, Angew. Chem. Int. Ed. 2013, 52, 5314–5318; Angew. Chem. 2013, 125, 5422–5426;
- 27dP. Liu, Y. Fukui, P. Tian, Z. He, C. Sun, N. Wu, G.-Q. Lin, J. Am. Chem. Soc. 2013, 135, 11700–11703;
- 27eK. Masutomi, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2014, 136, 7627–7630;
- 27fR. Santhoshkumar, S. Mannathan, C. H. Cheng, J. Am. Chem. Soc. 2015, 137, 16116–16120;
- 27gT. Xi, Z. Lu, J. Org. Chem. 2016, 81, 8858–8866;
- 27hJ. Hsieh, Y. Hong, C. Yang, S. Mannathan, C. H. Cheng, Org. Chem. Front. 2017, 4, 1615–1619;
- 27iS. Yu, C. Wu, S. Ge, J. Am. Chem. Soc. 2017, 139, 6526–6529;
- 27jJ. B. Diccianni, T. Heitmann, T. Diao, J. Org. Chem. 2017, 82, 6895–6903;
- 27kJ. Chen, X. Han, X. Lu, Angew. Chem. Int. Ed. 2017, 56, 14698–14701; Angew. Chem. 2017, 129, 14890–14893;
- 27lR. Kumar, Y. Hoshimoto, E. Tamai, M. Ohashi, S. Ogoshi, Nat. Commun. 2017, 8, 32;
- 27mK. K. Gollapelli, S. Donikela, N. Manjula, R. Chegondi, ACS Catal. 2018, 8, 1440–1447;
- 27nC. Wang, S. Ge, J. Am. Chem. Soc. 2018, 140, 10687–10690;
- 27oD. Posevins, Y. Qiu, J. E. Bäckvall, J. Am. Chem. Soc. 2018, 140, 3210–3214;
- 27pK. Li, M. Li, Q. Zhang, S. Zhu, Q.-L. Zhou, J. Am. Chem. Soc. 2018, 140, 7458–7461;
- 27qT. Shu, L. Zhao, S. Li, X. Y. Chen, C. von Essen, K. Rissanen, D. Enders, Angew. Chem. Int. Ed. 2018, 57, 10985–10988; Angew. Chem. 2018, 130, 11151–11154;
- 27rY. Tan, F. Zhang, P. Xie, S. Zhang, Y. Wang, Q. Li, P. Tian, X. Hong, G. Lin, J. Am. Chem. Soc. 2019, 141, 12770–12779;
- 27sA. Whyte, A. Torelli, B. Mirabi, L. Prieto, J. F. Rodríguez, M. Lautens, J. Am. Chem. Soc. 2020, 142, 9510–9517;
- 27tQ. Teng, W. Mao, D. Chen, Z. Wang, C. Tung, Z. Xu, Angew. Chem. Int. Ed. 2020, 59, 2220–2224; Angew. Chem. 2020, 132, 2240–2244;
- 27uA. Whyte, J. Bajohr, A. Torelli, M. Lautens, Angew. Chem. Int. Ed. 2020, 59, 16409–16413; Angew. Chem. 2020, 132, 16551–16555;
- 27vY. You, S. Ge, Angew. Chem. Int. Ed. 2021, 60, 12046–12052; Angew. Chem. 2021, 133, 12153–12159;
- 27wY. Chen, Z. Ding, Y. Wang, W. Liu, W. Kong, Angew. Chem. Int. Ed. 2021, 60, 5273–5278; Angew. Chem. 2021, 133, 5333–5338;
- 27xZ. Ding, Y. Wang, W. Liu, Y. Chen, W. Kong, J. Am. Chem. Soc. 2021, 143, 53–59.
- 28L. Hie, S. D. Ramgren, T. Mesganaw, N. K. Garg, Org. Lett. 2012, 14, 4182–4185.
- 29Selected reviews on metal-catalyzed [2+2+2] cycloaddition reactions, see:
- 29aM. Amatore, C. Aubert, Eur. J. Org. Chem. 2015, 265–286;
- 29bA. Pla-Quintana, A. Roglans, Asian J. Org. Chem. 2018, 7, 1706–1718;
- 29cA. Roglans, A. Pla-Quintana, M. Solà, Chem. Rev. 2021, 121, 1894–1979;
- 29dP. Matton, S. Huvelle, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, Synthesis 2022, 54, 4–32 and references therein.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.