Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen
Teng Wei Ng
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
These authors contributed equally to this work.
Search for more papers by this authorRan Tao
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077 Singapore
These authors contributed equally to this work.
Search for more papers by this authorWilly Wei Li See
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Search for more papers by this authorSi Bei Poh
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Search for more papers by this authorCorresponding Author
Yu Zhao
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Search for more papers by this authorTeng Wei Ng
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
These authors contributed equally to this work.
Search for more papers by this authorRan Tao
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077 Singapore
These authors contributed equally to this work.
Search for more papers by this authorWilly Wei Li See
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Search for more papers by this authorSi Bei Poh
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Search for more papers by this authorCorresponding Author
Yu Zhao
Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544 Republic of Singapore
Search for more papers by this authorAbstract
We disclose herein a catalytic borrowing hydrogen method that enables an unprecedented, economical one-pot access to enantiopure tetrahydropyridines with minimal reagent use or waste formation. This method couples a few classes of readily available substrates with commercially available 1,3-amino alcohols, and delivers the valuable tetrahydropyridines of different substitution patterns free of N-protection. Such transformations are highly challenging to achieve, as multiple redox steps need to be realized in a cascade and numerous side reactions including a facile aromatization have to be overcome. Highly diastereoselective functionalizations of tetrahydropyridines also result in a general access to enantiopure di- and tri-substituted piperidines, which ranks the topmost frequent N-heterocycle in commercial drugs.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202212528-sup-0001-misc_information.pdf10 MB | Supporting Information |
ange202212528-sup-0001-SI_16.cif1.3 MB | Supporting Information |
ange202212528-sup-0001-SI_18a.cif466.7 KB | Supporting Information |
ange202212528-sup-0001-SI_7a.cif935.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257.
- 2For selected recent reviews, see:
- 2aM. M. Khan, S. Khan, Saigal, S. Iqbal, RSC Adv. 2016, 6, 42045;
- 2bN. Srivastava, L. Macha, H.-J. Ha, Org. Biomol. Chem. 2020, 18, 5493.
- 3D. Ma, N. Ma, Tetrahedron Lett. 2003, 44, 3963.
- 4For selected examples on piperdine/THP synthesis via cycloaddition, see
- 4aD. Tong, J. Wu, N. Bazinski, D. Koo, N. Vemula, B. L. Pagenkopf, Chem. Eur. J. 2019, 25, 15244;
- 4bH. Wang, W. Zhou, M. Tao, A. Hu, J. Zhang, Org. Lett. 2017, 19, 1710;
- 4cR. Dey, P. Banerjee, Org. Lett. 2017, 19, 304.
- 5For selected examples on the SNAP protocol, see:
- 5aC.-V. T. Vo, J. W. Bode, J. Org. Chem. 2014, 79, 2809;
- 5bM. K. Škopić, F. Losch, A. E. McMillan, N. Willeke, M. Malenica, L. Bering, J. Bode, A. Brunschweiger, Org. Lett. 2022, 24, 1383.
- 6for selected examples, see:
- 6aK. R. Campos, Chem. Soc. Rev. 2007, 36, 1069;
- 6bE. A. Mitchell, A. Peschiulli, N. Lefevre, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2012, 18, 10092;
- 6cD. P. Affron, J. A. Bull, Eur. J. Org. Chem. 2016, 139;
- 6dM. Shang, K. S. Feu, J. C. Vantourout, L. M. Barton, H. L. Osswald, N. Kato, K. Gagaring, C. W. McNamara, G. Chen, L. Hu, S. Ni, P. Fernández-Canelas, M. Chen, R. R Merchant, T. Qin, S. L. Schreiber, B. Melillo, J.-Q. Yu, P. S. Baran, Proc. Natl. Acad. Sci. USA 2019, 116, 8721.
- 7for selected examples on cross dehydrogenative coupling, see:
- 7aC.-J. Li, Acc. Chem. Res. 2009, 42, 2335;
- 7bK. Peng, Z. B. Dong, Adv. Synth. Catal. 2021, 363, 1185;
- 7cT. Tian, Z. P. Li, C.-J. Li, Green Chem. 2021, 23, 6789.
- 8for selected examples on direct functionalization of unprotected N-heterocycles, see:
- 8aW. Chen, L. Ma, A. Paul, D. Seidel, Nat. Chem. 2018, 10, 165;
- 8bA. Paul, D. Seidel, J. Am. Chem. Soc. 2019, 141, 8778;
- 8cW. Chen, A. Paul, K. A. Abboud, D. Seidel, Nat. Chem. 2020, 12, 545;
- 8dD. A. Valles, S. Dutta, A. Paul, K. A. Abboud, I. Ghiviriga, D. Seidel, Org. Lett. 2021, 23, 6367.
- 9for selected examples on catalytic intramolecular cyclization via hydroamination, see:
- 9aJ. Hannedouche, E. Schulz, Chem. Eur. J. 2013, 19, 4972;
- 9bR. L. LaLonde, B. D. Sherry, E. J. Kang, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 2452.
- 10for selected examples on asymmetric hydrogenation, see:
- 10aF. Glorius, N. Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, Angew. Chem. Int. Ed. 2004, 43, 2850; Angew. Chem. 2004, 116, 2910;
- 10bC. Y. Legault, A. B. Charette, J. Am. Chem. Soc. 2005, 127, 8966;
- 10cZ. S. Ye, M. W. Chen, Q. A. Chen, L. Shi, Y. Duan, Y. G. Zhou, Angew. Chem. Int. Ed. 2012, 51, 10181; Angew. Chem. 2012, 124, 10328;
- 10dM.-W. Chen, Y. Ji, J. Wang, Q.-A. Chen, L. Shi, Y.-G. Zhou, Org. Lett. 2017, 19, 4988;
- 10eL. S. Zheng, F. Wang, X. Y. Ye, G. Q. Chen, X. Zhang, Org. Lett. 2020, 22, 8882.
- 11for selected examples on enzymatic reductive amination, see:
- 11aR. C. Simon, B. Grischek, F. Zepeck, A. Steinreiber, F. Belaj, W. Kroutil, Angew. Chem. Int. Ed. 2012, 51, 6713; Angew. Chem. 2012, 124, 6817;
- 11bS. P. France, S. Hussain, A. M. Hill, L. J. Hepworth, R. M. Howard, K. R. Mulholland, S. L. Flitsch, N. J. Turner, ACS Catal. 2016, 6, 3753.
- 12for selected reviews on borrowing hydrogen, see:
- 12aA. Quintard, J. Rodriguez, Chem. Commun. 2016, 52, 10456;
- 12bQ. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev. 2015, 44, 2305;
- 12cA. Corma, J. Navas, M. J. Sabater, Chem. Rev. 2018, 118, 1410;
- 12dT. Irrgang, R. Kempe, Chem. Rev. 2019, 119, 2524;
- 12eT. Kwok, O. Hoff, R. J. Armstrong, T. J. Donohoe, Chem. Eur. J. 2020, 26, 12912–12926;
- 12fB. G. Reed-Berendt, D. E. Latham, M. B. Dambatta, L. C. Morrill, ACS Cent. Sci. 2021, 7, 570;
- 12gJ. M. Ketcham, I. Shin, T. P. Montgomery, M. J. Krische, Angew. Chem. Int. Ed. 2014, 53, 9142; Angew. Chem. 2014, 126, 9294;
- 12hC. G. Santana, M. J. Krische, ACS Catal. 2021, 11, 5572.
- 13for selected recent examples, see:
- 13aY. Lu, S. K. Woo, M. J. Krische, J. Am. Chem. Soc. 2011, 133, 13876;
- 13bA.-M. R. Dechert-Schmitt, D. C. Schmitt, X. Gao, T. Itoh, M. J. Krische, Nat. Prod. Rep. 2014, 31, 504;
- 13cF. G. Mutti, T. Knaus, N. S. Scrutton, M. Breuer, N. J. Turner, Science 2015, 349, 1525;
- 13dS. Imm, S. Bähn, L. Neubert, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2010, 49, 8126; Angew. Chem. 2010, 122, 8303;
- 13eR. J. Armstrong, W. M. Akhtar, T. A. Young, F. Duarte, T. J. Donohoe, Angew. Chem. Int. Ed. 2019, 58, 12558; Angew. Chem. 2019, 131, 12688;
- 13fR. Xu, K. Wang, H. Liu, W. Tang, H. Sun, D. Xue, J. Xiao, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 21959; Angew. Chem. 2020, 132, 22143.
- 14J. Leonard, A. J. Blacker, S. P. Marsden, M. F. Jones, K. R. Mulholland, R. Newton, Org. Process Res. Dev. 2015, 19, 1400.
- 15for selected examples on borrowing hydrogen from our group, see:
- 15aY. Zhang, C.-S. Lim, D. S. B. Sim, H.-J. Pan, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 1399; Angew. Chem. 2014, 126, 1423;
- 15bZ. Q. Rong, Y. Zhang, R. H. B. Chua, H.-J. Pan, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 4944;
- 15cZ.-Q. Rong, Z. Yu, C. Weng, L.-C. Yang, S. Lu, Y. Lan, Y. Zhao, ACS Catal. 2020, 10, 9464;
- 15dH.-J. Pan, Y. Lin, T. Gao, K. K. Lau, W. Feng, B. Yang, Y. Zhao, Angew. Chem. Int. Ed. 2021, 60, 18599; Angew. Chem. 2021, 133, 18747;
- 15eC. S. Lim, T. T. Quach, Y. Zhao, Angew. Chem. Int. Ed. 2017, 56, 7176; Angew. Chem. 2017, 129, 7282;
- 15fG. Xu, G. Yang, Y. Wang, P.-L. Shao, J. N. N. Yau, B. Liu, Y. Zhao, Y. Sun, X. Xie, S. Wang, Y. Zhang, L. Xia, Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 14082; Angew. Chem. 2019, 131, 14220;
- 15gT.-L. Liu, T. W. Ng, Y. Zhao, J. Am. Chem. Soc. 2017, 139, 3643;
- 15hR.-Z. Huang, K. K. Lau, Z. Li, T.-L. Liu, Y. Zhao, J. Am. Chem. Soc. 2018, 140, 14647–14654;
- 15iT. W. Ng, G. Liao, K. K. Lau, H.-J. Pan, Y. Zhao, Angew. Chem. Int. Ed. 2020, 59, 11384; Angew. Chem. 2020, 132, 11480.
- 16For an elegant related approach, see: A. E. R. Chamberlain, K. J. Paterson, R. J. Armstrong, H. C. Twin, T. J. Donohoe, Chem. Commun. 2020, 56, 3563.
- 17J.-Y. Liao, P.-L. Shao, Y. Zhao, J. Am. Chem. Soc. 2015, 137, 628.
- 18For examples on dehydrogenative pyridine synthesis, see:
- 18aS. Michlik, R. Kempe, Angew. Chem. Int. Ed. 2013, 52, 6326; Angew. Chem. 2013, 125, 6450;
- 18bT. Hille, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed. 2017, 56, 371; Angew. Chem. 2017, 129, 377;
- 18cD. Srimani, Y. Ben-David, D. Milstein, Chem. Commun. 2013, 49, 6632;
- 18dS. P. Midya, V. G. Landge, M. K. Sahoo, J. Rana, E. Balaraman, Chem. Commun. 2018, 54, 90;
- 18eB. Pan, B. Liu, E. Yue, Q. Liu, Z. Yang, Z. Wang, W. A. Sun, ACS Catal. 2016, 6, 1247.
- 19D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400; Angew. Chem. 2015, 127, 6498.
- 20W. Liu, D. Zell, M. John, L. Ackermann, Angew. Chem. Int. Ed. 2015, 54, 4092; Angew. Chem. 2015, 127, 4165.
- 21Deposition numbers 2180408 (7 a), CCDC 2180407 (16) and CCDC 1941656 (18 a) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.