Millisecond-Range Time-Resolved Bioimaging Enabled through Ultralong Aqueous Phosphorescence Probes
Mingyue Cui
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorPeiling Dai
State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorJiali Ding
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorManjing Li
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorRong Sun
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorXin Jiang
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorMenglin Wu
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorXueke Pang
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorMingzhu Liu
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorProf. Qiang Zhao
State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Bin Song
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Yao He
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorMingyue Cui
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorPeiling Dai
State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorJiali Ding
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorManjing Li
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorRong Sun
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorXin Jiang
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorMenglin Wu
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorXueke Pang
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorMingzhu Liu
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorProf. Qiang Zhao
State Key Laboratory of Organic Electronics and Information Displays &, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) &, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Bin Song
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorCorresponding Author
Prof. Yao He
Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Jiangsu, Suzhou, 215123 China
Search for more papers by this authorAbstract
Probes featuring room-temperature phosphorescence (RTP) are promising tools for time-resolved imaging. It is worth noting that the time scale of time-resolved bioimaging generally ranges around the microsecond level, because of the short-lived emission. Herein, the first example of millisecond-range time-resolved bioimaging is illustrated, which is enabled through a kind of ultralong aqueous phosphorescence probes (i.e., cyclo-(Arg-Gly-AspD-Tyr-Cys)-conjugated zinc-doped silica nanospheres), with a RTP emission lasting for ≈5 s and a lifetime as long as 743.7 ms. We demonstrate that live cells and deep tumor tissue in mice can be specifically targeted through immune-phosphorescence imaging, with a high signal-to-background ratio (SBR) value of ≈69 for in vitro imaging, and ≈627 for in vivo imaging, respectively. We further show that, compared to that of fluorescence imaging, the SBR enhancement of millisecond-range time-resolved in vivo bioimaging is up to 105 times.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202200172-sup-0001-misc_information.pdf2.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. P. Li, G. Baryshnikov, L. J. Ding, X. Y. Bao, X. Li, J. J. Lu, M. Q. Liu, S. Shen, M. K. Luo, M. Zhang, H. Agren, X. D. Wang, L. L. Zhu, Angew. Chem. Int. Ed. 2020, 59, 7548–7554; Angew. Chem. 2020, 132, 7618–7624;
- 1bM. Cardoso Dos Santos, I. Colin, G. R. D. Santos, K. Susumu, M. Demarque, L. Medintz, N. Hildebrandt, Adv. Mater. 2020, 32, 2003912;
- 1cZ. Z. Zhu, B. Song, J. L. Yuan, C. L. Yang, Adv. Sci. 2016, 3, 1600146.
- 2
- 2aT. Wang, S. F. Wang, Z. Y. Liu, Z. Y. He, P. Yu, M. Y. Zhao, H. X. Zhang, L. F. Lu, Z. X. Wang, D. Y. Zhao, W. M. Liu, J.-C. G. Bunzli, F. Zhang, Nat. Mater. 2021, 20, 1571–1578;
- 2bT. B. Zhang, Z. Y. Wang, Z. Xiang, P. Lu, H. H. Lai, L. Yuan, X. B. Zhang, W. H. Tan, Angew. Chem. Int. Ed. 2021, 60, 800–805; Angew. Chem. 2021, 133, 813–818;
- 2cS. Chung, R. A. Revia, M. Q. Zhang, Adv. Mater. 2021, 33, 1904362.
- 3
- 3aX. C. Li, X. Liang, J. L. Yin, W. Y. Lin, Chem. Soc. Rev. 2021, 50, 102–119;
- 3bL. F. Guo, M. G. Tian, Z. Y. Zhang, Q. Lu, Z. Q. Niu, X. Q. Yu, J. Am. Chem. Soc. 2021, 143, 3169–3179;
- 3cY. Tang, Y. Zhao, W. Lin, Nat. Protoc. 2020, 15, 3499–3526.
- 4
- 4aW. L. Zhou, Y. Chen, Q. L. Yu, H. Y. Zhang, Z. X. Liu, X. Y. Dai, J. J. Li, Y. Liu, Nat. Commun. 2020, 11, 4655;
- 4bJ. Wang, J. J. Nie, P. X. Guo, Z. H. Yan, B. G. Yu, W. F. Bu, J. Am. Chem. Soc. 2020, 142, 2709–2714;
- 4cY. Y. Jiang, K. Y. Pu, Chem. Rev. 2021, 121, 13086–13131.
- 5Q. J. Li, M. Zhou, M. Y. Yang, Q. F. Yang, Z. X. Zhang, J. Shi, Nat. Commun. 2018, 9, 734.
- 6
- 6aQ. Wu, K. Y. Zhang, P. Dai, H. Zhu, Y. Wang, L. Song, L. Wang, S. Liu, Q. Zhao, W. Huang, J. Am. Chem. Soc. 2020, 142, 1057–1064;
- 6bZ. J. Li, N. Yu, J. J. Zhou, Y. Li, Y. W. Zhang, L. Huang, L. Huang, K. Huang, Y. Zhao, S. S. Kelmar, J. Y. Yang, G. Han, Adv. Mater. 2020, 32, 2003881;
- 6cZ. J. Li, Y. Zhao, K. Huang, Y. W. Zhang, H. Yang, G. Hang, Angew. Chem. Int. Ed. 2021, 60, 15886–15890; Angew. Chem. 2021, 133, 16022–16026;
- 6dA. Abdukayum, J. T. Chen, Q. Zhao, X. P. Yan, J. Am. Chem. Soc. 2013, 135, 14125–14133.
- 7
- 7aX. F. Wang, H. Y. Xiao, P. Z. Zhong, Q. Z. Yang, B. Chen, C. H. Tung, Y. Z. Chen, L. Z. Wu, J. Am. Chem. Soc. 2019, 141, 5045–5050;
- 7bJ. B. Jin, H. Jinag, Q. Q. Yang, L. L. Tang, C. Zheng, Q. L. Fan, K. Y. Zhang, Q. Zhang, W. Huang, Nat. Commun. 2020, 11, 842;
- 7cY. Wang, H. Gao, J. Yang, M. Fang, D. Ding, B. Z. Tang, Z. Li, Adv. Mater. 2021, 33, 2007811;
- 7dQ. X. Dang, Y. Y. Jiang, J. F. Wang, J. Q. Wang, Q. H. Zhang, M. K. Zhang, S. M. Luo, Y. J. Xie, K. Y. Pu, Q. Q. Li, L. Zhen, Adv. Mater. 2020, 32, 2006752.
- 8B. S. Chang, D. F. Li, Y. Ren, C. R. Qu, X. J. Shi, R. Q. Liu, H. G. Liu, J. Tian, Z. H. Hu, T. L. Sun, Z. Cheng, Nat. Biomed. Eng. 2021, https://doi.org/10.1038/s41551-021-00773-2.
- 9C. Z. Jin, F. Y. Liang, J. Q. Wang, L. L. Wang, J. P. Liu, X. X. Liao, T. W. Rees, B. Yuan, H. Wang, Y. Shen, Z. Pei, L. N. Ji, H. Chao, Angew. Chem. Int. Ed. 2020, 59, 15987–15991; Angew. Chem. 2020, 132, 16121–16125.
- 10Y. C. Liang, Q. Cao, K. K. Liu, X. Y. Peng, L. Z. Sui, S. P. Wang, S. Y. Song, X. Y. Wu, W. B. Zhao, Y. Deng, Q. Lou, L. Dong, C. X. Shan, ACS Nano 2021, 15, 16242–16254.
- 11
- 11aJ. L. He, Y. H. Chen, Y. L. He, X. K. Xu, B. F. Lei, H. R. Zhang, J. L. Zhang, C. F. Hu, Y. L. Liu, Small 2020, 16, 2005228;
- 11bW. Li, S. S. Wu, X. K. Xu, J. L. Zhuang, H. R. Zhang, C. F. Hu, B. F. Lei, C. F. Kaminski, Y. L. Liu, Chem. Mater. 2019, 31, 9887–9894;
- 11cY. Sun, S. Liu, L. Sun, Nat. Commun. 2020, 11, 5591;
- 11dX. Zhen, C. Xie, K. Y. Pu, Angew. Chem. Int. Ed. 2018, 57, 3938–3942; Angew. Chem. 2018, 130, 4002–4006.
- 12
- 12aC. Donnelly, S. Finizio, S. Gliga, M. Holler, A. H., M. Odstrčil, S. Mayr, V. Scagnoli, L. J. Heyderman, M. Guizar-Sicairos, J. Raabe, Nat. Nanotechnol. 2020, 15, 356;
- 12bK. Mishra, J. P. Fuenzalida-Werner, F. Pennacchietti, R. Janowski, A. Chmyrov, Y. Huang, C. Zakian, U. Klemm, I. Testa, D. Niessing, V. Ntziachristos, A. C. Stiel, Nat. Biotechnol. 2021, https://doi.org/10.1038/s41587-021-01100-5;
- 12cK. Y. Zhang, Q. Yu, H. J. Wei, S. J. Liu, Q. Zhao, W. Huang, Chem. Rev. 2018, 118, 1770–1839.
- 13
- 13aJ. H. Yang, Y. H. Zhang, X. H. Wu, W. B. Dai, D. Chen, J. B. Shi, B. Tong, Q. Peng, H. Y. Xie, Z. X. Cai, Y. P. Dong, X. Zhang, Nat. Commun. 2021, 12, 4883;
- 13bM. Huo, X. Y. Dai, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 27171–27177; Angew. Chem. 2021, 133, 27377–27383;
- 13cS. Y. Sun, J. Wang, L. W. Ma, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 18557–18560; Angew. Chem. 2021, 133, 18705–18708;
- 13dF. M. Xiao, H. Q. Gao, Y. X. Lei, W. B. Dai, M. C. Liu, X. Y. Zheng, Z. X. Cai, X. B. Huang, H. Y. Wu, D. Ding, Nat. Commun. 2022, 13, 186.
- 14
- 14aF. Peng, Y. Y. Su, X. P. Wei, Y. M. Lu, Y. F. Zhou, Y. L. Zhong, S. T. Lee, Y. He, Angew. Chem. Int. Ed. 2013, 52, 1457–1461; Angew. Chem. 2013, 125, 1497–1501;
- 14bY. L. Zhong, F. Peng, F. Bao, S. Y. Wang, Y. Liu, Y. Y. Su, S. T. Lee, Y. He, J. Am. Chem. Soc. 2013, 135, 8350–8356;
- 14cS. C. Wu, Y. L. Zhong, Y. F. Zhou, B. Song, B. B. Chu, X. J. Xiao, Y. Y. Su, Y. He, J. Am. Chem. Soc. 2015, 137, 14726–14732;
- 14dB. Song, Y. L. Zhong, S. C. Wu, B. B. Chu, Y. Y. Su, Y. He, J. Am. Chem. Soc. 2016, 138, 4824–4831.
- 15M. Y. Cui, M. J. Li, J. H. Wang, R. Z. Chen, Z. J. Xu, J. Y. Wang, J. F. Han, G. Y. Hu, R. Sun, X. Jiang, B. Song, Y. He, Angew. Chem. Int. Ed. 2021, 60, 15490–15496; Angew. Chem. 2021, 133, 15618–15624.
- 16
- 16aW. Y. Shi, J. Yao, L. Q. Bai, C. Lu, Adv. Funct. Mater. 2018, 28, 1804961;
- 16bM. Denis, J. Pancholi, K. Jobe, M. Watkinson, S. M. Goldup, Angew. Chem. Int. Ed. 2018, 57, 5310–5314; Angew. Chem. 2018, 130, 5408–5412.
- 17M. M. Tang, X. Y. Ji, H. Xu, L. Zhang, A. R. Jiang, B. Song, Y. Y. Su, Y. He, Anal. Chem. 2018, 90, 8188–8195.
- 18K. Jiang, Y. H. Wang, C. Z. Cai, H. W. Lin, Adv. Mater. 2018, 30, 1800783.
- 19Y. L. Zhong, F. Peng, X. P. Wei, Y. F. Zhou, J. Wang, Y. Y. Su, Y. He, Angew. Chem. Int. Ed. 2012, 51, 8485–8489; Angew. Chem. 2012, 124, 8613–8617.
- 20
- 20aP. Zhu, Y. Chen, J. L. Shi, ACS Nano 2018, 12, 3780–3795;
- 20bY. Q. Zhua, J. Feijena, Z. Y. Zhong, Nano Today 2018, 18, 65–85;
- 20cM. Y. Cui, S. M. Liu, B. Song, D. X. Guo, J. H. Wang, G. Hu, Y. Su, Y. He, Nano-Micro Lett. 2019, 11, 73.
- 21H. B. Sun, S. J. Liu, W. P. Lin, K. Y. Zhang, W. Lv, X. Huang, F. W. Huo, H. R. Yang, G. Jenkins, Q. Zhang, W. Huang, Nat. Commun. 2014, 5, 3601.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.