Dissection of Light-Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO2 Reduction
Eva Pugliese
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorDr. Philipp Gotico
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
Search for more papers by this authorIris Wehrung
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorDr. Bernard Boitrel
Institut des Sciences Chimiques de Rennes (ISCR), Université Rennes 1, 35042 Rennes, France
Search for more papers by this authorDr. Annamaria Quaranta
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Search for more papers by this authorDr. Minh-Huong Ha-Thi
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
Search for more papers by this authorDr. Thomas Pino
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
Search for more papers by this authorDr. Marie Sircoglou
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorDr. Winfried Leibl
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Search for more papers by this authorCorresponding Author
Dr. Zakaria Halime
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorCorresponding Author
Prof. Ally Aukauloo
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Search for more papers by this authorEva Pugliese
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorDr. Philipp Gotico
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
Search for more papers by this authorIris Wehrung
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorDr. Bernard Boitrel
Institut des Sciences Chimiques de Rennes (ISCR), Université Rennes 1, 35042 Rennes, France
Search for more papers by this authorDr. Annamaria Quaranta
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Search for more papers by this authorDr. Minh-Huong Ha-Thi
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
Search for more papers by this authorDr. Thomas Pino
Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay (ISMO), 91405 Orsay, France
Search for more papers by this authorDr. Marie Sircoglou
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorDr. Winfried Leibl
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Search for more papers by this authorCorresponding Author
Dr. Zakaria Halime
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Search for more papers by this authorCorresponding Author
Prof. Ally Aukauloo
Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, 91405 Orsay, France
Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
Search for more papers by this authorAbstract
Iron porphyrins are among the best molecular catalysts for the electrocatalytic CO2 reduction reaction. Powering these catalysts with the help of photosensitizers comes along with a couple of unsolved challenges that need to be addressed with much vigor. We have designed an iron porphyrin catalyst decorated with urea functions (UrFe) acting as a multipoint hydrogen bonding scaffold towards the CO2 substrate. We found a spectacular photocatalytic activity reaching unreported TONs and TOFs as high as 7270 and 3720 h−1, respectively. While the Fe0 redox state has been widely accepted as the catalytically active species, we show here that the FeI species is already involved in the CO2 activation, which represents the rate-determining step in the photocatalytic cycle. The urea functions help to dock the CO2 upon photocatalysis. DFT calculations bring support to our experimental findings that constitute a new paradigm in the catalytic reduction of CO2.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202117530-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1T. Cardona, A. Sedoud, N. Cox, A. W. Rutherford, Biochim. Biophys. Acta Bioenerg. 2012, 1817, 26–43.
- 2H. Dau, I. Zaharieva, Acc. Chem. Res. 2009, 42, 1861–1870.
- 3V. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26–58.
- 4J. Bian, J. Feng, Z. Zhang, J. Sun, M. Chu, L. Sun, X. Li, D. Tang, L. Jing, Chem. Commun. 2020, 56, 4926–4929.
- 5S. Kreft, R. Schoch, J. Schneidewind, J. Rabeah, E. V. Kondratenko, V. A. Kondratenko, H. Junge, M. Bauer, S. Wohlrab, M. Beller, Chem 2019, 5, 1818–1833.
- 6M. Schreier, L. Curvat, F. Giordano, L. Steier, A. Abate, S. M. Zakeeruddin, J. Luo, M. T. Mayer, M. Gratzel, Nat. Commun. 2015, 6, 7326.
- 7H. Park, H. H. Ou, A. J. Colussi, M. R. Hoffmann, J. Phys. Chem. A 2015, 119, 4658–4666.
- 8H. S. Jeon, J. H. Koh, S. J. Park, M. S. Jee, D.-H. Ko, Y. J. Hwang, B. K. Min, J. Mater. Chem. A 2015, 3, 5835–5842.
- 9T. Arai, S. Sato, T. Morikawa, Energy Environ. Sci. 2015, 8, 1998–2002.
- 10S. Sato, T. Arai, T. Morikawa, K. Uemura, T. M. Suzuki, H. Tanaka, T. Kajino, J. Am. Chem. Soc. 2011, 133, 15240–15243.
- 11X. Liu, S. Inagaki, J. Gong, Angew. Chem. Int. Ed. 2016, 55, 14924–14950; Angew. Chem. 2016, 128, 15146–15174.
- 12J. Albero, Y. Peng, H. García, ACS Catal. 2020, 10, 5734–5749.
- 13N. Serpone, A. V. Emeline, J. Phys. Chem. Lett. 2012, 3, 673–677.
- 14A. Rosas-Hernandez, C. Steinlechner, H. Junge, M. Beller, Top. Curr. Chem. 2018, 376, 1–25.
- 15A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L. DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A. Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R. Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C. Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013, 113, 6621–6658.
- 16M. Aresta, A. Dibenedetto, A. Angelini, Chem. Rev. 2014, 114, 1709–1742.
- 17B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C. P. Kubiak, Annu. Rev. Phys. Chem. 2012, 63, 541–569.
- 18M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510–8537; Angew. Chem. 2011, 123, 8662–8690.
- 19S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano 2010, 4, 1259–1278.
- 20S. Amanullah, P. Saha, A. Nayek, M. E. Ahmed, A. Dey, Chem. Soc. Rev. 2021, 50, 3755–3823.
- 21N. W. Kinzel, C. Werlé, W. Leitner, Angew. Chem. Int. Ed. 2021, 60, 11628–11686; Angew. Chem. 2021, 133, 11732–11792.
- 22F. Franco, C. Rettenmaier, H. S. Jeon, B. Roldan Cuenya, Chem. Soc. Rev. 2020, 49, 6884–6946.
- 23R. Bonetto, F. Crisanti, A. Sartorel, ACS Omega 2020, 5, 21309–21319.
- 24R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118, 4631–4701.
- 25P. Gotico, Z. Halime, A. Aukauloo, Dalton Trans. 2020, 49, 2381–2396.
- 26A. W. Nichols, C. W. Machan, Front. Chem. 2019, 7, 397.
- 27F. Franco, S. Fernandez, J. Lloret-Fillol, Curr. Opin. Electrochem. 2019, 15, 109–117.
- 28H. Takeda, C. Cometto, O. Ishitani, M. Robert, ACS Catal. 2017, 7, 70–88.
- 29A. Call, M. Cibian, K. Yamamoto, T. Nakazono, K. Yamauchi, K. Sakai, ACS Catal. 2019, 9, 4867–4874.
- 30C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, Science 2012, 338, 90–94.
- 31J. Bonin, M. Robert, M. Routier, J. Am. Chem. Soc. 2014, 136, 16768–16771.
- 32C. Römelt, J. Song, M. Tarrago, J. A. Rees, M. van Gastel, T. Weyhermüller, S. DeBeer, E. Bill, F. Neese, S. Ye, Inorg. Chem. 2017, 56, 4745–4751.
- 33C. Römelt, S. Ye, E. Bill, T. Weyhermüller, M. van Gastel, F. Neese, Inorg. Chem. 2018, 57, 2141–2148.
- 34A. J. Göttle, M. T. M. Koper, J. Am. Chem. Soc. 2018, 140, 4826–4834.
- 35Y.-Q. Zhang, J.-Y. Chen, P. E. M. Siegbahn, R.-Z. Liao, ACS Catal. 2020, 10, 6332–6345.
- 36T. Mashiko, C. A. Reed, K. J. Haller, W. R. Scheidt, Inorg. Chem. 1984, 23, 3192–3196.
- 37P. Gotico, B. Boitrel, R. Guillot, M. Sircoglou, A. Quaranta, Z. Halime, W. Leibl, A. Aukauloo, Angew. Chem. Int. Ed. 2019, 58, 4504–4509; Angew. Chem. 2019, 131, 4552–4557.
- 38P. Gotico, L. Roupnel, R. Guillot, M. Sircoglou, W. Leibl, Z. Halime, A. Aukauloo, Angew. Chem. Int. Ed. 2020, 59, 22451–22455; Angew. Chem. 2020, 132, 22637–22641.
- 39S. L.-F. Chan, T. L. Lam, C. Yang, S.-C. Yan, N. M. Cheng, Chem. Commun. 2015, 51, 7799–7801.
- 40V. S. Thoi, N. Kornienko, C. G. Margarit, P. Yang, C. J. Chang, J. Am. Chem. Soc. 2013, 135, 14413–14424.
- 41T. Ouyang, H.-H. Huang, J.-W. Wang, D.-C. Zhong, T.-B. Lu, Angew. Chem. Int. Ed. 2017, 56, 738–743; Angew. Chem. 2017, 129, 756–761.
- 42D. Hong, Y. Tsukakoshi, H. Kotani, T. Ishizuka, T. Kojima, J. Am. Chem. Soc. 2017, 139, 6538–6541.
- 43H. Yuan, B. Cheng, J. Lei, L. Jiang, Z. Han, Nat. Commun. 2021, 12, 1835.
- 44J. Hawecker, J.-M. Lehn, R. Ziessel, J. Chem. Soc. Chem. Commun. 1985, 56–58.
- 45Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L. Chen, H. Fan, W.-L. Man, S.-M. Yiu, K.-C. Lau, T.-C. Lau, M. Robert, Nat. Catal. 2019, 2, 801–808.
- 46J.-E. Lee, A. Yamaguchi, H. Ooka, T. Kazami, M. Miyauchi, N. Kitadai, R. Nakamura, Chem. Commun. 2021, 57, 3267–3270.
- 47S. Amanullah, P. Saha, A. Dey, J. Am. Chem. Soc. 2021, 143, 13579–13592.
- 48H. Rao, L. C. Schmidt, J. Bonin, M. Robert, Nature 2017, 548, 74–77.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.