Synthesis of Axially Chiral Aldehydes by N-Heterocyclic-Carbene-Catalyzed Desymmetrization Followed by Kinetic Resolution
Yingtao Wu
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorMingrui Li
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorJiaqiong Sun
School of Environment, Northeast Normal University, Changchun, 130117 China
Search for more papers by this authorCorresponding Author
Prof. Guangfan Zheng
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Prof. Qian Zhang
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorYingtao Wu
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorMingrui Li
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorJiaqiong Sun
School of Environment, Northeast Normal University, Changchun, 130117 China
Search for more papers by this authorCorresponding Author
Prof. Guangfan Zheng
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
Search for more papers by this authorCorresponding Author
Prof. Qian Zhang
Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
Search for more papers by this authorAbstract
Axially chiral aldehydes have received increasing attention in enantioselective catalysis. However, only very few catalytic methods have been developed to construct structurally diverse axially chiral aldehydes. We herein describe an NHC-catalyzed atroposelective esterification of biaryl dialdehydes as a general and practical strategy for the construction of axially chiral aldehydes. Mechanistic studies indicate that coupling proceeds through a novel combination of NHC-catalyzed desymmetrization of the dialdehydes and kinetic resolution. This protocol features excellent enantioselectivity, mild conditions, good functional-group tolerance, and applicability to late-stage functionalization and provides a modular platform for the synthesis of axially chiral aldehydes and their derivatives.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202117340-sup-0001-misc_information.pdf19.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. Pu, Chem. Rev. 1998, 98, 2405–2494;
- 1bG. A. Hembury, V. V. Borovkov, Y. Inoue, Chem. Rev. 2008, 108, 1–73;
- 1cL. Pu, Acc. Chem. Res. 2012, 45, 150–163.
- 2Reviews see:
- 2aJ. E. Smyth, N. M. Butler, P. A. Keller, Nat. Prod. Rep. 2015, 32, 1562–1583;
- 2bJ. Clayden, W. J. Moran, P. J. Edwards, S. R. LaPlante, Angew. Chem. Int. Ed. 2009, 48, 6398–6401; Angew. Chem. 2009, 121, 6516–6520; selected examples see:
- 2cC. C. Hughes, A. Prieto-Davo, P. R. Jensen, W. Fenical, Org. Lett. 2008, 10, 629–631;
- 2dS. M. Kupchan, R. W. Britton, M. F. Ziegler, C. J. Gilmore, R. J. Restivo, R. F. Bryan, J. Am. Chem. Soc. 1973, 95, 1335–1336;
- 2eA. A. Wubea, F. Bucara, K. Asresb, S. Gibbonsc, M. Adamsa, B. Streita, A. Bodensiecka, R. Bauer, Phytomedicine 2006, 13, 452–456;
- 2fC. L. Oliver, J. A. Bauer, K. G. Wolter, M. L. Ubell, A. Narayan, K. M. O'Connell, S. G. Fisher, S. Wang, X. Wu, M. Ji, T. E. Carey, C. R. Bradford, Clin. Cancer Res. 2004, 10, 7757–7763.
- 3
- 3aY. Chen, S. Yekta, A. K. Yudin, Chem. Rev. 2003, 103, 3155–3212;
- 3bT. Akiyama, Chem. Rev. 2007, 107, 5744–5758.
- 4
- 4aA. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T. Souchi, R. Noyori, J. Am. Chem. Soc. 1980, 102, 7932–7934;
- 4bP. Kočovský, S. Vyskočil, M. Smrčina, Chem. Rev. 2003, 103, 3213–3246;
- 4cW. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029–3070.
- 5
- 5aD. Parmar, E. Sugiono, S. Raja, M. Rueping, Chem. Rev. 2014, 114, 9047–9153;
- 5b Privileged Chiral Ligands and Catalysts (Ed.: Q. Zhou), Wiley-VCH, Weinheim, 2011, pp. 295–332.
10.1002/9783527635207.ch8 Google Scholar
- 6Selected reviews see:
- 6aG. Bringmann, A. J. P. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384–5427; Angew. Chem. 2005, 117, 5518–5563;
- 6bM. C. Kozlowski, B. J. Morgan, E. C. Linton, Chem. Soc. Rev. 2009, 38, 3193–3207;
- 6cG. Bringmann, T. Gulder, T. A. M. Gulder, M. Breuning, Chem. Rev. 2011, 111, 563–639;
- 6dE. Kumarasamy, R. Raghunathan, M. P. Sibi, J. Sivaguru, Chem. Rev. 2015, 115, 112391–1300;
- 6eJ. Wencel-Delord, A. Panossian, F. R. Leroux, F. Colobert, Chem. Soc. Rev. 2015, 44, 3418–3430;
- 6fJ. Cheng, S. Xiang, S. Li, L. Ye, B. Tan, Chem. Rev. 2021, 121, 4805–4902;
- 6g Metal-catalyzed Asymmetric Synthesis of Biaryl Atropisomers in Axially Chiral Compounds: Asymmetric Synthesis and Applications (Ed.: B. Tan), Wiley-VCH, Weinheim, 2021;
10.1002/9783527825172 Google Scholar
- 6hG. Liao, T. Zhou, Q. Yao, B. Shi, Chem. Commun. 2019, 55, 8514–8523; selected examples see:
- 6iJ. L. Gustafson, D. Lim, S. J. Miller, Science 2010, 328, 1251–1255;
- 6jK. T. Barrett, A. J. Metrano, P. R. Rablen, S. J. Miller, Nature 2014, 509, 71–75;
- 6kJ. D. Jolliffe, R. J. Armstrong, M. D. Smith, Nat. Chem. 2017, 9, 558–562;
- 6lL. Qi, J. Mao, J. Zhang, B. Tan, Nat. Chem. 2018, 10, 58–64.
- 7Selected reviews see:
- 7aQ. Wang, Q. Gu, S. You, Angew. Chem. Int. Ed. 2019, 58, 6818–6825; Angew. Chem. 2019, 131, 6890–6897;
- 7bZ. Yuan, J. Liao, H. Jiang, P. Cao, Y. Li, RSC Adv. 2020, 10, 35433–35448; examples see:
- 7cB. Xu, L. Shi, Y. Zhang, Z. Wu, L. Fu, C. Luo, L. Zhang, Y. Peng, Q. Guo, Chem. Sci. 2014, 5, 1988–1991;
- 7dW. Wen, L. Chen, M. Luo, Y. Zhang, Y. Chen, Q. Ouyang, Q. Guo, J. Am. Chem. Soc. 2018, 140, 9774–9780;
- 7eJ. Chen, X. Gong, J. Li, Y. Li, J. Ma, C. Hou, G. Zhao, W. Yuan, B. Zhao, Science 2018, 360, 1438–1442;
- 7fL. Chen, M. Luo, F. Zhu, W. Wen, Q. Guo, J. Am. Chem. Soc. 2019, 141, 5159–5163;
- 7gG. Liao, H. Chen, Y. Xia, B. Li, Q. Yao, B. Shi, Angew. Chem. Int. Ed. 2019, 58, 11464–11468; Angew. Chem. 2019, 131, 11586–11590.
- 8Review see:
- 8aG. Liao, T. Zhang, Z. Lin, B. Shi, Angew. Chem. Int. Ed. 2020, 59, 19773–19786; Angew. Chem. 2020, 132, 19941–19954; selected examples see:
- 8bQ. Yao, S. Zhang, B. Zhan, B. Shi, Angew. Chem. Int. Ed. 2017, 56, 6617–6621; Angew. Chem. 2017, 129, 6717–6721;
- 8cG. Liao, Q. Yao, Z. Zhang, Y. Wu, D. Huang, B. Shi, Angew. Chem. Int. Ed. 2018, 57, 3661–3665; Angew. Chem. 2018, 130, 3723–3727;
- 8dG. Liao, B. Li, H. Chen, Q. Yao, Y. Xia, J. Luo, B. Shi, Angew. Chem. Int. Ed. 2018, 57, 17151–17155; Angew. Chem. 2018, 130, 17397–17401;
- 8eH. Chen, S. Zhang, G. Liao, Q. Yao, X. Xu, K. Zhang, B. Shi, Organometallics 2019, 38, 4022–4028;
- 8fJ. Fan, Q. Yao, Y. Liu, G. Liao, S. Zhang, B. Shi, Org. Lett. 2019, 21, 3352–3356;
- 8gS. Zhang, Q. Yao, G. Liao, X. Li, H. Li, H. Chen, X. Hong, B. Shi, ACS Catal. 2019, 9, 1956–1961;
- 8hH. Song, Y. Li, Q. Yao, L. Jin, L. Liu, Y. Liu, B. Shi, Angew. Chem. Int. Ed. 2020, 59, 6576–6580; Angew. Chem. 2020, 132, 6638–6642;
- 8iU. Dhawa, C. Tian, T. Wdowik, J. C. A. Oliveira, J. Hao, L. Ackermann, Angew. Chem. Int. Ed. 2020, 59, 13451–13457; Angew. Chem. 2020, 132, 13553–13559;
- 8jH. Chen, G. Liao, C. Xu, Q. Yao, S. Zhang, B. Shi, CCS Chem. 2021, 3, 455–465.
- 9
- 9aJ. Zhang, Q. Xu, J. Wu, J. Fan, M. Xie, Org. Lett. 2019, 21, 6361–6365;
- 9bJ. Zhang, Q. Xu, J. Fan, L. Zhou, N. Liu, L. Zhu, J. Wu, M. Xie, Org. Chem. Front. 2021, 8, 3404–3412;
- 9cU. Dhawa, T. Wdowik, X. Hou, B. Yuan, J. C. A. Oliveira, L. Ackermann, Chem. Sci. 2021, 12, 14182–14188.
- 10G. Yang, Z. Li, Y. Liu, D. Guo, X. Sheng, J. Wang, Org. Lett. 2021, 23, 8109–8113.
- 11For selected reviews concerning enantioselective desymmetrization, see:
- 11aM. C. Willis, J. Chem. Soc. Perkin Trans. 1 1999, 1765–1784;
- 11bX. Zeng, Z. Cao, Y. Wang, F. Zhou, J. Zhou, Chem. Rev. 2016, 116, 7330–7396.
- 12
- 12aThe 2021 Nobel Prize in Chemistry has been awarded to Benjamin List and David MacMillan for the development of enantioselective organocatalysis; For selected reviews concerning organocatalytic enantioselective desymmetrization see:
- 12bA. Borissov, T. Q. Davies, S. R. Ellis, T. A. Fleming, M. S. W. Richardson, D. J. Dixon, Chem. Soc. Rev. 2016, 45, 5474–5540;
- 12cZ. Wang, D. Pan, T. Li, Z. Jin, Chem. Asian J. 2018, 13, 2149–2163;
- 12dC. D. Risi, O. Bortolini, G. D. Carmine, D. Ragno, A. Massi, Synthesis 2019, 51, 1871–1891;
- 12eS. Xiang, B. Tan, Nat. Commun. 2020, 11, 3786.
- 13S. Staniland, B. Yuan, N. Gimnez-Agull, T. Marcelli, S. C. Willies, D. M. Grainger, N. J. Turner, J. Clayden, Chem. Eur. J. 2014, 20, 13084–13088.
- 14
- 14aD. Enders, O. Niemeier, A. Henseler, Chem. Rev. 2007, 107, 5606–5655;
- 14bX. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41, 3511–3522;
- 14cM. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496;
- 14dR. S. Menon, A. T. Biju, V. Nair, Chem. Soc. Rev. 2015, 44, 5040–5052;
- 14eD. M. Flanigan, F. Romanov-Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307–9387;
- 14fX. Chen, Q. Liu, P. Chauhan, D. Enders, Angew. Chem. Int. Ed. 2018, 57, 3862–3873; Angew. Chem. 2018, 130, 3924–3935;
- 14gK. J. R. Murauski, A. A. Jaworski, K. A. Scheidt, Chem. Soc. Rev. 2018, 47, 1773–1782;
- 14hX. Chen, Z. Gao, S. Ye, Acc. Chem. Res. 2020, 53, 690–702;
- 14iY. Sumida, H. Ohmiya, Chem. Soc. Rev. 2021, 50, 6320–6332.
- 15Selected examples for recent NHCs-catalyzed activation of carbonyls see:
- 15aT. Ishii, Y. Kakeno, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 2019, 141, 3854–3858;
- 15bA. V. Davies, K. P. Fitzpatrick, R. C. Betori, K. A. Scheidt, Angew. Chem. Int. Ed. 2020, 59, 9143–9148; Angew. Chem. 2020, 132, 9228–9233;
- 15cQ. Meng, N. Döben, A. Studer, Angew. Chem. Int. Ed. 2020, 59, 19956–19960; Angew. Chem. 2020, 132, 20129–20134;
- 15dS. Ren, W. Lv, X. Yang, J. Yan, J. Xu, F. Wang, L. Hao, H. Chai, Z. Jin, Y. R. Chi, ACS Catal. 2021, 11, 2925–2934;
- 15eB. Mondal, R. Maiti, X. Yang, J. Xu, W. Tian, J. Yan, X. Li, Y. R. Chi, Chem. Sci. 2021, 12, 8778–8783;
- 15fR. Maiti, J. Yan, X. Yang, B. Mondal, J. Xu, H. Chai, Z. Jin, Y. R. Chi, Angew. Chem. Int. Ed. 2021, 60, 26616–26621; Angew. Chem. 2021, 133, 26820–26825.
- 16
- 16aR. Song, Y. Xie, Z. Jin, Y. Chi, Angew. Chem. Int. Ed. 2021, 60, 26026–26037; Angew. Chem. 2021, 133, 26230–26241;
- 16bJ. Wang, C. Zhao, J. Wang, ACS Catal. 2021, 11, 12520–12531.
- 17NHCs-catalyzed desymmetrization for axial chirality, see:
- 17aS. Lu, S. B. Poh, Z. Rong, Y. Zhao, Org. Lett. 2019, 21, 6169–6172;
- 17bG. Yang, D. Guo, D. Meng, J. Wang, Nat. Commun. 2019, 10, 3062;
- 17cS. Zhuo, T. Zhu, L. Zhou, C. Mou, H. Chai, Y. Lu, L. Pan, Z. Jin, Y. R. Chi, Angew. Chem. Int. Ed. 2019, 58, 1784–1788; Angew. Chem. 2019, 131, 1798–1802;
- 17dS. Barik, S. Shee, S. Das, R. G. Gonnade, G. Jindal, S. Mukherjee, A. T. Biju, Angew. Chem. Int. Ed. 2021, 60, 12264–12268; Angew. Chem. 2021, 133, 12372–12376;
- 17eJ. Jin, X. Huang, J. Xu, T. Li, X. Peng, X. Zhu, J. Zhang, Z. Jin, Y. R. Chi, Org. Lett. 2021, 23, 3991–3996.
- 18For selected examples concerning NHCs-catalyzed creation of axial chirality, see:
- 18aS. Lu, S. B. Poh, Y. Zhao, Angew. Chem. Int. Ed. 2014, 53, 11041–11045; Angew. Chem. 2014, 126, 11221–11225;
- 18bD. Guo, Q. Peng, B. Zhang, J. Wang, Org. Lett. 2021, 23, 7765–7770;
- 18cS. Lu, J. Ong, H. Yang, S. B. Poh, X. Liew, C. S. D. Seow, M. W. Wong, Y. Zhao, J. Am. Chem. Soc. 2019, 141, 17062–17067;
- 18dC. Zhao, D. Guo, K. Munkerup, K. Huang, F. Li, J. Wang, Nat. Commun. 2018, 9, 611;
- 18eK. Xu, W. Li, S. Zhu, T. Zhu, Angew. Chem. Int. Ed. 2019, 58, 17625–17630; Angew. Chem. 2019, 131, 17789–17794;
- 18fC. Zhang, Y. Gao, H. Wang, B. Zhou, S. Ye, Angew. Chem. Int. Ed. 2021, 60, 13918–13922; Angew. Chem. 2021, 133, 14037–14041;
- 18gT. Li, C. Mou, P. Qi, X. Peng, S. Jiang, G. Hao, W. Xue, S. Yang, L. Hao, Y. R. Chi, Z. Jin, Angew. Chem. Int. Ed. 2021, 60, 9362–9367; Angew. Chem. 2021, 133, 9448–9453;
- 18hY. Lv, G. Luo, Q. Liu, Z. Jin, X. Zhang, Y. R. Chi, Nat. Commun. 2022, 13, 36;
- 18iJ. Yan, R. Maiti, S. Ren, W. Tian, T. Li, J. Xu, B. Mondal, Z. Jin, Y. R. Chi, Nat. Commun. 2022, 13, 84.
- 19
- 19aZ. Li, J. Zhao, B. Sun, T. Zhou, M. Liu, S. Liu, M. Zhang, Q. Zhang, J. Am. Chem. Soc. 2017, 139, 11702–11705;
- 19bS. Yang, L. Wang, H. Zhang, C. Liu, L. Zhang, X. Wang, G. Zhang, Y. Li, Q. Zhang, ACS Catal. 2019, 9, 716–721;
- 19cG. Zhang, Y. Li, Y. Wang, Q. Zhang, T. Xiong, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 11927–11931; Angew. Chem. 2020, 132, 12025–12029;
- 19dT. Qin, G. Lv, Q. Meng, G. Zhang, T. Xiong, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 25949–25957; Angew. Chem. 2021, 133, 26153–26161.
- 20
- 20aJ. Guin, S. D. Sarkar, S. Grimme, A. Studer, Angew. Chem. Int. Ed. 2008, 47, 8727–8730; Angew. Chem. 2008, 120, 8855–8858;
- 20bS. De Sarkar, S. Grimme, A. Studer, J. Am. Chem. Soc. 2010, 132, 1190–1191;
- 20cW. Harnying, P. Sudkaow, A. Biswas, A. Berkessel, Angew. Chem. Int. Ed. 2021, 60, 19631–19636; Angew. Chem. 2021, 133, 19783–19788.
- 21
- 21aX. Zhao, K. E. Ruhl, T. Rovis, Angew. Chem. Int. Ed. 2012, 51, 12330–12333; Angew. Chem. 2012, 124, 12496–12499;
- 21bS. Lu, S. B. Poh, W. Y. Siau, Y. Zhao, Angew. Chem. Int. Ed. 2013, 52, 1731–1734; Angew. Chem. 2013, 125, 1775–1778;
- 21cZ. Wu, F. Li, J. Wang, Angew. Chem. Int. Ed. 2015, 54, 1629–1633; Angew. Chem. 2015, 127, 1649–1653;
- 21dC. Zhao, F. Li, J. Wang, Angew. Chem. Int. Ed. 2016, 55, 1820–1824; Angew. Chem. 2016, 128, 1852–1856;
- 21eG. Di Carmine, D. Ragno, A. Brandolese, O. Bortolini, D. Pecorari, F. Sabuzi, A. Mazzanti, A. Massi, Chem. Eur. J. 2019, 25, 7469–7474;
- 21fY. Gao, C. Zhang, L. Dai, Y. Han, S. Ye, Org. Lett. 2021, 23, 1361–1366.
- 22
- 22aT. Hashimoto, H. Kimura, K. Maruoka, Angew. Chem. Int. Ed. 2010, 49, 6844–6847; Angew. Chem. 2010, 122, 6996–6999;
- 22bT. Hashimoto, H. Kimura, Y. Kawamata, K. Maruoka, Nat. Chem. 2011, 3, 642–646;
- 22cL. Lin, S. Fukagawa, D. Sekine, E. Tomita, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2018, 57, 12048–12052; Angew. Chem. 2018, 130, 12224–12228;
- 22dS. Fukagawa, M. Kojima, T. Yoshino, S. Matsunaga, Angew. Chem. Int. Ed. 2019, 58, 18154–18158; Angew. Chem. 2019, 131, 18322–18326;
- 22eT. Zhou, P. Qian, J. Li, Y. Zhou, H. Li, H. Chen, B. Shi, J. Am. Chem. Soc. 2021, 143, 6810–6816.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.