Synergistic Hydrocobaltation and Borylcobaltation Enable Regioselective Migratory Triborylation of Unactivated Alkenes
Dr. Yinsong Zhao
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaozhong Ge
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorDr. Yinsong Zhao
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaozhong Ge
Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
Search for more papers by this authorAbstract
The structural diversity of sp3-triorganometallic reagents enhances their potentiality in the modular construction of molecular complexity in chemical synthesis. Despite significant achievements on the preparation of sp3 1,1,1- and 1,1,2-triorganometallic B,B,B-reagents, catalytic approaches that enable the installation of multiple boryl groups at skipped carbons of unactivated alkenes still remain elusive. Herein, we report a cobalt-catalyzed selective triborylation reaction of unactivated alkenes to access synthetically versatile 1,1,3-triborylalkanes. This triborylation protocol provides a general platform for regioselective trifunctionalization of unactivated alkenes, and its utility is highlighted by the synthesis of various value-added chemicals from readily accessible unactivated alkenes. Mechanistic studies, including deuterium-labelling experiments and evaluation of potential reactive intermediates, provide insight into the experimentally observed chemo- and regioselectivity.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202116133-sup-0001-misc_information.pdf14.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aA. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209–219;
- 1bH. Sommer, F. Juliá-Hernández, R. Martin, I. Marek, ACS Cent. Sci. 2018, 4, 153–165;
- 1cR. K. Dhungana, S. KC, P. Basnet, R. Giri, Chem. Rec. 2018, 18, 1314–1340;
- 1dJ.-S. Zhang, L. Liu, T. Chen, L. B. Han, Chem. Asian J. 2018, 13, 2277–2291;
- 1eH. Jiang, A. Studer, Chem. Soc. Rev. 2020, 49, 1790–1811;
- 1fY. Li, D. Wu, H. Cheng, G. Yin, Angew. Chem. Int. Ed. 2020, 59, 7990–8003; Angew. Chem. 2020, 132, 8066–8079.
- 2S. Ghosh, D. Lai, A. Hajra, Org. Biomol. Chem. 2020, 18, 7948–7976.
- 3G. Rousseau, B. Breit, Angew. Chem. Int. Ed. 2011, 50, 2450–2494; Angew. Chem. 2011, 123, 2498–2543.
- 4D. G. Hall, Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine, Vol. 2, Wiley-VCH, Weinheim, 2011.
10.1002/9783527639328 Google Scholar
- 5For selected reviews, see:
- 5aC. M. Vogels, S. A. Westcott, Curr. Org. Chem. 2005, 9, 687–699;
- 5bJ. V. Obligacion, P. J. Chirik, Nat. Chem. Rev. 2018, 2, 15–34;
- 5cZ. Zuo, H. Wen, G. Liu, Z. Huang, Synlett 2018, 29, 1421–1429;
- 5dS. K. Bose, L. Mao, L. Kuehn, U. Radius, J. Nekvinda, W. L. Santos, S. A. Westcott, P. G. Steel, T. B. Marder, Chem. Rev. 2021, 121, 13238–13341;
- 5eX. Yang, S. Ge, Curr. Opin. Green Sustainable Chem. 2021, 31, 100542.
- 6For selected examples of transition-metal catalyzed remote hydroboration or protoboration of unactivated alkenes, see:
- 6aC. J. Lata, C. M. Crudden, J. Am. Chem. Soc. 2010, 132, 131–137;
- 6bJ. V. Obligacion, P. J. Chirik, J. Am. Chem. Soc. 2013, 135, 19107–19110;
- 6cA. J. Ruddy, O. L. Sydora, B. L. Small, M. Stradiotto, L. Turculet, Chem. Eur. J. 2014, 20, 13918–13922;
- 6dM. L. Scheuermann, E. J. Johnson, P. J. Chirik, Org. Lett. 2015, 17, 2716–2719;
- 6eT. Ogawa, A. J. Ruddy, O. L. Sydora, M. Stradiotto, L. Turculet, Organometallics 2017, 36, 417–423;
- 6fX. Chen, Z. Cheng, J. Guo, Z. Lu, Nat. Commun. 2018, 9, 3939;
- 6gC. M. Macaulay, S. J. Gustafson, J. T. Fuller III, D.-H. Kwon, T. Ogawa, M. J. Ferguson, R. Mcdonald, M. D. Lumsden, S. M. Bischof, O. L. Sydora, ACS Catal. 2018, 8, 9907–9925;
- 6hN. G. Léonard, W. N. Palmer, M. R. Friedfeld, M. J. Bezdek, P. J. Chirik, ACS Catal. 2019, 9, 9034–9044;
- 6iM. Hu, S. Ge, Nat. Commun. 2020, 11, 765;
- 6jX. Yu, H. Zhao, S. Xi, Z. Chen, X. Wang, L. Wang, L. Q. H. Lin, K. P. Loh, M. J. Koh, Nat. Catal. 2020, 3, 585–592;
- 6kT. C. Jankins, R. Martin-Montero, P. Cooper, R. Martin, K. M. Engle, J. Am. Chem. Soc. 2021, 143, 14981–14986.
- 7For selected reviews, see:
- 7aT. Ishiyama, N. Miyaura, Chem. Rec. 2004, 3, 271–280;
- 7bN. Miralles, R. J. Maza, E. FernÁNdez, Adv. Synth. Catal. 2018, 360, 1306–1327;
- 7cR. Nallagonda, K. Padala, A. Masarwa, Org. Biomol. Chem. 2018, 16, 1050–1064;
- 7dO. SalvadÓ, E. FernÁNdez, Molecules 2020, 25, 1758;
- 7eX. Wang, Y. Wang, W. Huang, C. Xia, L. Wu, ACS Catal. 2021, 11, 1–18.
- 8For selected examples on transition-metal catalyzed multi-borylation of alkenes, see:
- 8aR. T. Baker, P. Nguyen, T. B. Marder, S. A. Westcott, Angew. Chem. Int. Ed. Engl. 1995, 34, 1336–1338; Angew. Chem. 1995, 107, 1451–1452;
- 8bJ. B. Morgan, S. P. Miller, J. P. Morken, J. Am. Chem. Soc. 2003, 125, 8702–8703;
- 8cJ. Ramírez, R. Corberán, M. Sanaú, E. Peris, E. Fernandez, Chem. Commun. 2005, 3056–3058;
- 8dV. Lillo, J. Mata, J. Ramírez, E. Peris, E. Fernandez, Organometallics 2006, 25, 5829–5831;
- 8eR. Corberán, V. Lillo, J. A. Mata, E. Fernandez, Peris, Organometallics 2007, 26, 4350–4353;
- 8fJ. Takaya, N. Iwasawa, ACS Catal. 2012, 2, 1993–2006;
- 8gS. N. Mlynarski, C. H. Schuster, J. P. Morken, Nature 2014, 505, 386–390;
- 8hL. Zhang, Z. Huang, J. Am. Chem. Soc. 2015, 137, 15600–15603;
- 8iL. Li, T. Gong, X. Lu, B. Xiao, Y. Fu, Nat. Commun. 2017, 8, 345;
- 8jW. J. Teo, S. Ge, Angew. Chem. Int. Ed. 2018, 57, 1654–1658; Angew. Chem. 2018, 130, 1670–1674;
- 8kW. J. Teo, S. Ge, Angew. Chem. Int. Ed. 2018, 57, 12935–12939; Angew. Chem. 2018, 130, 13117–13121;
- 8lX. Wang, X. Cui, S. Li, Y. Wang, C. Xia, H. Jiao, L. Wu, Angew. Chem. Int. Ed. 2020, 59, 13608–13612; Angew. Chem. 2020, 132, 13710–13714.
- 9J. Hu, Y. Zhao, Z. Shi, Nat. Catal. 2018, 1, 860–869.
- 10
- 10aS. Yu, C. Wu, S. Ge, J. Am. Chem. Soc. 2017, 139, 6526–6529;
- 10bH. L. Sang, C. Wu, G. G. D. Phua, S. Ge, ACS Catal. 2019, 9, 10109–10114;
- 10cC. Wu, J. Liao, S. Ge, Angew. Chem. Int. Ed. 2019, 58, 8882–8886; Angew. Chem. 2019, 131, 8974–8978;
- 10dW. J. Teo, X. Yang, Y. Y. Poon, S. Ge, Nat. Commun. 2020, 11, 5193;
- 10eY. e You, S. Ge, Angew. Chem. Int. Ed. 2021, 60, 20684–20688; Angew. Chem. 2021, 133, 20852–20856.
- 11K. Hong, X. Liu, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 10581–10584.
- 12C. E. Iacono, T. C. Stephens, T. S. Rajan, G. Pattison, J. Am. Chem. Soc. 2018, 140, 2036–2040.
- 13
- 13aC. García-Ruiz, J. L. Y. Chen, C. Sandford, K. Feeney, P. Lorenzo, G. Berionni, H. Mayr, V. K. Aggarwal, J. Am. Chem. Soc. 2017, 139, 15324–15327;
- 13bK. Endo, M. Hirokami, T. Shibata, J. Org. Chem. 2010, 75, 3469–3472.
- 14K. Endo, T. Ohkubo, M. Hirokami, T. Shibata, J. Am. Chem. Soc. 2010, 132, 11033–11035.
- 15C. Wang, C. Wu, S. Ge, ACS Catal. 2016, 6, 7585–7589.
- 16M. Odachowski, A. Bonet, S. Essafi, P. Conti-Ramsden, J. N. Harvey, D. Leonori, V. K. Aggarwal, J. Am. Chem. Soc. 2016, 138, 9521–9532.
- 17For a review, see:
- 17aX. Liu, B. Li, Q. Liu, Synthesis 2019, 51, 1293–1310; For selected examples, see:
- 17bX. Liu, W. Zhang, Y. Wang, Z.-X. Zhang, L. Jiao, Q. Liu, J. Am. Chem. Soc. 2018, 140, 6873–6882;
- 17cJ. Zhao, B. Cheng, C. Chen, Z. Lu, Org. Lett. 2020, 22, 837–841.
- 18D. Kong, B. Hu, M. Yang, D. Gong, H. Xia, D. Chen, Organometallics 2020, 39, 4437–4443.
- 19
- 19aW. B. Reid, J. J. Spillane, S. B. Krause, D. A. Watson, J. Am. Chem. Soc. 2016, 138, 5539–5542;
- 19bW. B. Reid, D. A. Watson, Org. Lett. 2018, 20, 6832–6835;
- 19cO. O. Idowu, J. C. Hayes, W. B. Reid, D. A. Watson, Org. Lett. 2021, 23, 4838–4842.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.