Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration
Jinghao Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Chengshuo Shen
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorGuoli Zhang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorFuwei Gan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYongle Ding
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Huibin Qiu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorJinghao Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Chengshuo Shen
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorGuoli Zhang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorFuwei Gan
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorYongle Ding
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Huibin Qiu
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
Search for more papers by this authorAbstract
Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol−1. These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115979-sup-0001-Cartesian_coordinates_of_the_optimized.xyz1.3 MB | Supporting Information |
ange202115979-sup-0001-misc_information.pdf36.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Slota, A. Keerthi, W. K. Myers, E. Tretyakov, M. Baumgarten, A. Ardavan, H. Sadeghi, C. J. Lambert, A. Narita, K. Müllen, L. Bogani, Nature 2018, 557, 691–695;
- 1bJ. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718–747;
- 1cH.-A. Lin, Y. Sato, Y. Segawa, T. Nishihara, N. Sugimoto, L. T. Scott, T. Higashiyama, K. Itami, Angew. Chem. Int. Ed. 2018, 57, 2874–2878; Angew. Chem. 2018, 130, 2924–2928;
- 1dR. Yu, J. D. Cox, F. J. G. de Abajo, Phys. Rev. Lett. 2016, 117, 123904;
- 1eG. M. Paternò, L. Moretti, A. J. Barker, Q. Chen, K. Müllen, A. Narita, G. Cerullo, F. Scotognella, G. Lanzani, Adv. Funct. Mater. 2019, 29, 1805249;
- 1fV. Bonal, R. Muñoz-Mármol, F. Gordillo Gámez, M. Morales-Vidal, J. M. Villalvilla, P. G. Boj, J. A. Quintana, Y. Gu, J. Wu, J. Casado, M. A. Díaz-García, Nat. Commun. 2019, 10, 3327;
- 1gY. Zhang, Y. Zhu, D. Lan, S. H. Pun, Z. Zhou, Z. Wei, Y. Wang, H. K. Lee, C. Lin, J. Wang, M. A. Petrukhina, Q. Li, Q. Miao, J. Am. Chem. Soc. 2021, 143, 5231–5238;
- 1hZ.-S. Wu, Y.-Z. Tan, S. Zheng, S. Wang, K. Parvez, J. Qin, X. Shi, C. Sun, X. Bao, X. Feng, K. Müllen, J. Am. Chem. Soc. 2017, 139, 4506–4512;
- 1iE. Jin, Q. Yang, C.-W. Ju, Q. Chen, K. Landfester, M. Bonn, K. Müllen, X. Liu, A. Narita, J. Am. Chem. Soc. 2021, 143, 10403–10412.
- 2
- 2aA. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616–6643;
- 2bX.-Y. Wang, A. Narita, K. Müllen, Nat. Chem. Rev. 2017, 2, 0100;
- 2cX.-Y. Wang, X. Yao, K. Müllen, Sci. China Chem. 2019, 62, 1099–1144.
- 3
- 3aM. Grzybowski, B. Sadowski, H. Butenschön, D. T. Gryko, Angew. Chem. Int. Ed. 2020, 59, 2998–3027; Angew. Chem. 2020, 132, 3020–3050;
- 3bZ. Xia, S. H. Pun, H. Chen, Q. Miao, Angew. Chem. Int. Ed. 2021, 60, 10311–10318; Angew. Chem. 2021, 133, 10399–10406;
- 3cY. Zou, Y. Han, S. Wu, X. Hou, C. H. E. Chow, J. Wu, Angew. Chem. Int. Ed. 2021, 60, 17654–17663; Angew. Chem. 2021, 133, 17795-17804.
- 4
- 4aI. Pozo, E. Guitián, D. Pérez, D. Peña, Acc. Chem. Res. 2019, 52, 2472–2481;
- 4bM. Roy, V. Berezhnaia, M. Villa, N. Vanthuyne, M. Giorgi, J.-V. Naubron, S. Poyer, V. Monnier, L. Charles, Y. Carissan, D. Hagebaum-Reignier, J. Rodriguez, M. Gingras, Y. Coquerel, Angew. Chem. Int. Ed. 2020, 59, 3264–3271; Angew. Chem. 2020, 132, 3290–3297;
- 4cF. Zhang, E. Michail, F. Saal, A.-M. Krause, P. Ravat, Chem. Eur. J. 2019, 25, 16241–16245.
- 5W. Yang, R. Bam, V. J. Catalano, W. A. Chalifoux, Angew. Chem. Int. Ed. 2018, 57, 14773–14777; Angew. Chem. 2018, 130, 14989–14993.
- 6H. Ito, Y. Segawa, K. Murakami, K. Itami, J. Am. Chem. Soc. 2019, 141, 3–10.
- 7
- 7aK. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K. Itami, Nat. Chem. 2013, 5, 739–744;
- 7bT. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 7763–7768;
- 7cChaolumen, M. Murata, A. Wakamiya, Y. Murata, Angew. Chem. Int. Ed. 2017, 56, 5082–5086; Angew. Chem. 2017, 129, 5164–5168;
- 7dJ. M. Fernández-García, P. J. Evans, S. Medina Rivero, I. Fernández, D. García-Fresnadillo, J. Perles, J. Casado, N. Martín, J. Am. Chem. Soc. 2018, 140, 17188–17196;
- 7eY. Zhu, Z. Xia, Z. Cai, Z. Yuan, N. Jiang, T. Li, Y. Wang, X. Guo, Z. Li, S. Ma, D. Zhong, Y. Li, J. Wang, J. Am. Chem. Soc. 2018, 140, 4222–4226;
- 7fX. Yang, F. Rominger, M. Mastalerz, Angew. Chem. Int. Ed. 2019, 58, 17577–17582; Angew. Chem. 2019, 131, 17741–17746;
- 7gY. Hu, G. M. Paternò, X.-Y. Wang, X.-C. Wang, M. Guizzardi, Q. Chen, D. Schollmeyer, X.-Y. Cao, G. Cerullo, F. Scotognella, K. Müllen, A. Narita, J. Am. Chem. Soc. 2019, 141, 12797–12803;
- 7hS. Castro-Fernández, C. M. Cruz, I. F. A. Mariz, I. R. Márquez, V. G. Jiménez, L. Palomino-Ruiz, J. M. Cuerva, E. Maçôas, A. G. Campaña, Angew. Chem. Int. Ed. 2020, 59, 7139–7145; Angew. Chem. 2020, 132, 7205–7211.
- 8
- 8aX. Dou, X. Yang, G. J. Bodwell, M. Wagner, V. Enkelmann, K. Müllen, Org. Lett. 2007, 9, 2485–2488;
- 8bJ. L. Ormsby, T. D. Black, C. L. Hilton, Bharat, B. T. King, Tetrahedron 2008, 64, 11370–11378;
- 8cS. L. Skraba-Joiner, E. C. McLaughlin, A. Ajaz, R. Thamatam, R. P. Johnson, J. Org. Chem. 2015, 80, 9578–9583;
- 8dX. Zhang, Z. Xu, W. Si, K. Oniwa, M. Bao, Y. Yamamoto, T. Jin, Nat. Commun. 2017, 8, 15073;
- 8eZ. A. Kasun, H. Sato, J. Nie, Y. Mori, J. A. Bender, S. T. Roberts, M. J. Krische, Chem. Sci. 2018, 9, 7866–7873;
- 8fS. Liu, C. Huang, J. Zhang, S. Tian, C. Li, N. Fu, L. Wang, B. Zhao, W. Huang, Eur. J. Org. Chem. 2019, 3061–3070;
- 8gT. Ikai, S. Yamakawa, N. Suzuki, E. Yashima, Chem. Asian J. 2021, 16, 769–774;
- 8hM. Krzeszewski, K. Sahara, Y. M. Poronik, T. Kubo, D. T. Gryko, Org. Lett. 2018, 20, 1517–1520;
- 8iJ. Liu, A. Narita, S. Osella, W. Zhang, D. Schollmeyer, D. Beljonne, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016, 138, 2602–2608;
- 8jS. Nobusue, K. Fujita, Y. Tobe, Org. Lett. 2017, 19, 3227–3230;
- 8kT. J. Sisto, L. N. Zakharov, B. M. White, R. Jasti, Chem. Sci. 2016, 7, 3681–3688.
- 9
- 9aA. Pradhan, P. Dechambenoit, H. Bock, F. Durola, J. Org. Chem. 2013, 78, 2266–2274;
- 9bJ. Ma, Y. Fu, E. Dmitrieva, F. Liu, H. Komber, F. Hennersdorf, A. A. Popov, J. J. Weigand, J. Liu, X. Feng, Angew. Chem. Int. Ed. 2020, 59, 5637–5642; Angew. Chem. 2020, 132, 5686–5691;
- 9cZ. Qiu, S. Asako, Y. Hu, C.-W. Ju, T. Liu, L. Rondin, D. Schollmeyer, J.-S. Lauret, K. Müllen, A. Narita, J. Am. Chem. Soc. 2020, 142, 14814–14819;
- 9dY. Han, Z. Xue, G. Li, Y. Gu, Y. Ni, S. Dong, C. Chi, Angew. Chem. Int. Ed. 2020, 59, 9026–9031; Angew. Chem. 2020, 132, 9111–9116;
- 9eC. Shen, G. Zhang, Y. Ding, N. Yang, F. Gan, J. Crassous, H. Qiu, Nat. Commun. 2021, 12, 2786.
- 10
- 10aJ. Merz, A. Steffen, J. Nitsch, J. Fink, C. B. Schürger, A. Friedrich, I. Krummenacher, H. Braunschweig, M. Moos, D. Mims, C. Lambert, T. B. Marder, Chem. Sci. 2019, 10, 7516–7534;
- 10bZ. Sun, C. Yi, Q. Liang, C. Bingi, W. Zhu, P. Qiang, D. Wu, F. Zhang, Org. Lett. 2020, 22, 209–213.
- 11
- 11aW. H. Laarhoven, W. J. C. Prinsen, Top. Curr. Chem. 1984, 125, 63–130;
- 11bY. Shen, C.-F. Chen, Chem. Rev. 2012, 112, 1463–1535.
- 12Deposition Numbers 2104209 (NG1), 2104215 (NG2), 2104214 (TTP), 2104210 (IM1), 2104216 (IM2), 2104213 (IM4), 2104211 (IM6), 2104212 (IM7) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures.
- 13A. H. A. Tinnemans, W. H. Laarhoven, J. Am. Chem. Soc. 1974, 96, 4611–4616.
- 14N. Ito, T. Hirose, K. Matsuda, Org. Lett. 2014, 16, 2502–2505.
- 15R. H. Janke, G. Haufe, E.-U. Würthwein, J. H. Borkent, J. Am. Chem. Soc. 1996, 118, 6031–6035.
- 16
- 16aD. Moran, F. Stahl, H. F. Bettinger, H. F. Schaefer, P. V. R. Schleyer, J. Am. Chem. Soc. 2003, 125, 6746–6752;
- 16bZ. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. V. R. Schleyer, Chem. Rev. 2005, 105, 3842–3888;
- 16cA. Stanger, Eur. J. Org. Chem. 2020, 3120–3127.
- 17R. Gershoni-Poranne, A. Stanger, Chem. Soc. Rev. 2015, 44, 6597–6615.
- 18H. L. Schmider, A. D. Becke, J. Mol. Struct. 2000, 527, 51–61.
- 19D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758–3772.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.