Proton/Electron Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO2 Reduction
Dr. Rong Wang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
These authors contributed equally to this work.
Search for more papers by this authorXinyue Wang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorWeijun Weng
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorYing Yao
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorDr. Pinit Kidkhunthod
Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 Thailand
Search for more papers by this authorProf. Dr. Changchun Wang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Hou
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jia Guo
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorDr. Rong Wang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
These authors contributed equally to this work.
Search for more papers by this authorXinyue Wang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
These authors contributed equally to this work.
Search for more papers by this authorWeijun Weng
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorYing Yao
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorDr. Pinit Kidkhunthod
Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 Thailand
Search for more papers by this authorProf. Dr. Changchun Wang
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Hou
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Jia Guo
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438 China
Search for more papers by this authorAbstract
Metal phthalocyanines (MePc) hold great promise in electrochemical reduction of CO2 to value-added chemicals, whereas the catalytic activity of MePc-containing polymers often suffers from a limited molecular modulation strategy. Herein, we synthesize an ultrathin conjugated microporous polymer sheath around carbon nanotubes by an ionothermal copolymerization of CoPc and H2Pc via the Scholl reaction. Given the H2Pc-mediated regulation in the synthesis, CoII metal is well preserved in the form of single atoms on the polymer sheath of the carbon nanotubes. With the synergistic effect of H2Pc moieties as proton/electron donors, the composites can selectively reduce CO2 to CO with a high Faradaic efficiency (max. 97 % at −0.9 V) in broad potential windows, exceptional turnover frequency (97 592 h−1 at −0.65 V) and large current density (>200 mA cm−2). It is thus desirable to develop a family of heterogeneous polymerized MePc with molecularly regulating electrocatalytic activity.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115503-sup-0001-misc_information.pdf6.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1O. S. Bushuyev, P. De Luna, C. T. Dinh, L. Tao, G. Saur, J. van de Lagemaat, S. O. Kelley, E. H. Sargent, Joule 2018, 2, 825–832.
- 2S. Liu, H. Tao, L. Zeng, Q. Liu, Z. Xu, Q. Liu, J.-L. Luo, J. Am. Chem. Soc. 2017, 139, 2160–2163.
- 3S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo, W. Zhang, D. Li, J. Yang, Y. Xie, Nature 2016, 529, 68–71.
- 4Y.-S. Wei, M. Zhang, R. Zou, Q. Xu, Chem. Rev. 2020, 120, 12089–12174.
- 5H. Fei, J. Dong, D. Chen, T. Hu, X. Duan, I. Shakir, Y. Huang, X. Duan, Chem. Soc. Rev. 2019, 48, 5207–5241.
- 6
- 6aS. Lin, C. S. Diercks, Y. B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M. Yaghi, C. J. Chang, Science 2015, 349, 1208–1213;
- 6bH. J. Zhu, M. Lu, Y.-R. Wang, S.-J. Yao, M. Zhang, Y.-H. Kan, J. Liu, Y. Chen, S.-L. Li, Y.-Q. Lan, Nat. Commun. 2020, 11, 497;
- 6cN. Huang, K. H. Lee, Y. Yue, X. Y. Xu, S. Irle, Q. H. Jiang, D. L. Jiang, Angew. Chem. Int. Ed. 2020, 59, 16587–16593; Angew. Chem. 2020, 132, 16730–16736;
- 6dB. Han, X. Ding, B. Q. Yu, H. Wu, W. Zhou, W. P. Liu, C. Y. Wei, B. T. Chen, D. D. Qi, H. L. Wang, K. Wang, Y. L. Chen, B. L. Chen, J. Z. Jiang, J. Am. Chem. Soc. 2021, 143, 7104–7113;
- 6eZ. Z. Liang, H. Y. Wang, R. Cao, Chem. Soc. Rev. 2021, 50, 2540–2581.
- 7J.-S. M. Lee, A. I. Cooper, Chem. Rev. 2020, 120, 2171–2214.
- 8
- 8aX. Zhang, H. Liu, P. An, Y. Shi, J. Han, Z. Yang, C. Long, J. Guo, S. Zhao, K. Zhao, H. Yin, L. Zheng, B. Zhang, X. Liu, L. Zhang, G. Li, Z. Tang, Sci. Adv. 2020, 6, eaaz4824;
- 8bC. Lu, J. Yang, S. Wei, S. Bi, Y. Xia, M. Chen, Y. Hou, M. Qiu, C. Yuan, Y. Su, F. Zhang, H. Liang, X. Zhuang, Adv. Funct. Mater. 2019, 29, 1806884.
- 9X. Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M. R. Hansen, F. Laquai, X. Feng, Angew. Chem. Int. Ed. 2013, 52, 9668–9672; Angew. Chem. 2013, 125, 9850–9854.
- 10G. F. Manbeck, E. Fujita, J. Porphyrins Phthalocyanines 2015, 19, 45–64.
- 11
- 11aD.-H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F. W. Li, T. Agapie, J. C. Peters, O. Shekhah, M. Eddaoudi, E. H. Sargent, Nat. Mater. 2020, 19, 266–276;
- 11bG. Wan, P. Yu, H. Chen, J. Wen, C. Sun, H. Zhou, N. Zhang, Q. Li, W. Zhao, B. Xie, T. Li, J. Shi, Small 2018, 14, 1704319;
- 11cH. Yin, C. Zhang, F. Liu, Y. Hou, Adv. Funct. Mater. 2014, 24, 2930–2937;
- 11dR. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, J. Am. Chem. Soc. 2018, 140, 11594–11598.
- 12
- 12aX. Zhang, Z. Wu, X. Zhang, L. Li, Y. Li, H. Xu, X. Li, X. Yu, Z. Zhang, Y. Liang, H. Wang, Nat. Commun. 2017, 8, 14675;
- 12bP. Peng, L. Shi, F. Huo, C. Mi, X. Wu, S. Zhang, Z. Xiang, Sci. Adv. 2019, 5, eaaw2322;
- 12cS. Liu, H. B. Yang, S.-F. Hung, J. Ding, W. Cai, L. Liu, J. Gao, X. Li, X. Ren, Z. Kuang, Y. Huang, T. Zhang, B. Liu, Angew. Chem. Int. Ed. 2020, 59, 798–803; Angew. Chem. 2020, 132, 808–813;
- 12dY. J. Sa, H. Jung, D. Shin, H. Y. Jeong, S. Ringe, H. Kim, Y. J. Hwang, S. H. Joo, ACS Catal. 2020, 10, 10920–10931;
- 12eY. Kumar, E. Kibena-Põldsepp, J. Kozlova, M. Rähn, A. Treshchalov, A. Kikas, V. Kisand, J. Aruväli, A. Tamm, J. C. Douglin, S. J. Folkman, I. Gelmetti, F. A. Garcés-Pineda, J. R. Galán-Mascarós, D. R. Dekel, K. Tammeveski, ACS Appl. Mater. Interfaces 2021, 13, 41507–41516.
- 13N. Han, Y. Wang, L. Ma, J. Wen, J. Li, H. Zheng, K. Nie, X. Wang, F. Zhao, Y. Li, J. Fan, J. Zhong, T. Wu, D. J. Miller, J. Lu, S.-T. Lee, Y. Li, Chem 2017, 3, 652–664.
- 14F. Yuan, J. Li, S. Namuangruk, N. Kungwan, J. Guo, C. Wang, Chem. Mater. 2017, 29, 3971–3979.
- 15
- 15aB. Wang, C. Rong, P. K. Chattaraj, S. Liu, Theor. Chem. Acc. 2019, 138, 124;
- 15bJ. Cao, Q. Ren, F. Chen, T. Lu, Sci. China Chem. 2015, 58, 1845–1852;
- 15cC. Tang, C. Chen, W. Xu, L. Xu, J. Mater. Chem. A 2019, 7, 6911–6919.
- 16
- 16aX. Huang, Y. Zhang, H. Shen, W. Li, T. Shen, Z. Ali, T. Tang, S. Guo, Q. Sun, Y. Hou, ACS Energy Lett. 2018, 3, 2914–2920;
- 16bZ. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou, J. Wang, Y. Wu, Y. Li, Adv. Mater. 2019, 31, 1808043.
- 17Y. Pan, R. Lin, Y. Chen, S. Liu, W. Zhu, X. Cao, W. Chen, K. Wu, W.-C. Cheong, Y. Wang, L. Zheng, J. Luo, Y. Lin, Y. Liu, C. Liu, J. Li, Q. Lu, X. Chen, D. Wang, Q. Peng, C. Chen, Y. Li, J. Am. Chem. Soc. 2018, 140, 4218–4221.
- 18S. Yang, Y. Yu, M. Dou, Z. Zhang, F. Wang, J. Am. Chem. Soc. 2020, 142, 17524–17530.
- 19
- 19aS. Ren, D. Joulié, D. Salvatore, K. Torbensen, M. Wang, M. Robert, C. P. Berlinguette, Science 2019, 365, 367;
- 19bX. Lu, Y. Wu, X. Yuan, L. Huang, Z. Wu, J. Xuan, Y. Wang, H. Wang, ACS Energy Lett. 2018, 3, 2527–2532;
- 19cJ. Su, J.-J. Zhang, J. Chen, Y. Song, L. Huang, M. Zhu, B. I. Yakobson, B. Z. Tang, R. Ye, Energy Environ. Sci. 2021, 14, 483–492;
- 19dM. Wang, K. Torbensen, D. Salvatore, S. Ren, D. Joulié, F. Dumoulin, D. Mendoza, B. Lassalle-Kaiser, U. Işci, C. P. Berlinguette, M. Robert, Nat. Commun. 2019, 10, 3602.
- 20
- 20aR. B. Kutz, Q. Chen, H. Yang, S. D. Sajjad, Z. Liu, I. R. Masel, Energy Technol. 2017, 5, 929–936;
- 20bS. Verma, Y. Hamasaki, C. Kim, W. Huang, S. Lu, H.-R. M. Jhong, A. A. Gewirth, T. Fujigaya, N. Nakashima, P. J. A. Kenis, ACS Energy Lett. 2018, 3, 193–198.
- 21W. Ma, S. Xie, X.-G. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D.-Y. Wu, Y. Wang, Nat. Commun. 2019, 10, 892.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.