Tunable Second-Level Room-Temperature Phosphorescence of Solid Supramolecules between Acrylamide–Phenylpyridium Copolymers and Cucurbit[7]uril
Wen-Wen Xu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYong Chen
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYi-Lin Lu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYue-Xiu Qin
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorHui Zhang
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiufang Xu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Liu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorWen-Wen Xu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYong Chen
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYi-Lin Lu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorYue-Xiu Qin
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorHui Zhang
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorXiufang Xu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yu Liu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071 China
Search for more papers by this authorAbstract
A series of solid supramolecules based on acrylamide–phenylpyridium copolymers with various substituent groups (P−R: R=−CN, −CO2Et, −Me, −CF3) and cucurbit[7]uril (CB[7]) are constructed to exhibit tunable second-level (from 0.9 s to 2.2 s) room-temperature phosphorescence (RTP) in the amorphous state. Compared with other solid supramolecules P−R/CB[7] (R=−CN, −CO2Et, −Me), P−CF3/CB[7] displays the longest lifetime (2.2 s), which is probably attributed to the fluorophilic interaction of cucurbiturils leading to a uncommon host–guest interaction between 4-phenylpyridium with −CF3 and CB[7]. Furthermore, the RTP solid supramolecular assembly (donors) can further react with organic dyes Eosin Y or SR101 (acceptors) to form ternary supramolecular systems featuring ultralong phosphorescence energy transfer (PpET) and visible delayed fluorescence (yellow for EY at 568 nm and red for SR101 at 620 nm). Significantly, the ultralong multicolor PpET supramolecular assembly can be further applied in fields of anti-counterfeiting and information encryption and painting.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202115265-sup-0001-misc_information.pdf5.3 MB | Supporting Information |
ange202115265-sup-0001-Vedio_3.mp47.2 MB | Supporting Information |
ange202115265-sup-0001-Vedio_4.mp411.4 MB | Supporting Information |
ange202115265-sup-0001-Vedio_5.mp413.3 MB | Supporting Information |
ange202115265-sup-0001-Vedio_6.mp412 MB | Supporting Information |
ange202115265-sup-0001-Vedio_7.mp414.3 MB | Supporting Information |
ange202115265-sup-0001-Vedio_8.mp412.3 MB | Supporting Information |
ange202115265-sup-0001-Video_1.mp48.4 MB | Supporting Information |
ange202115265-sup-0001-Video_10.mp42.1 MB | Supporting Information |
ange202115265-sup-0001-Video_11.mp42.4 MB | Supporting Information |
ange202115265-sup-0001-Video_2.mp49.8 MB | Supporting Information |
ange202115265-sup-0001-Video_9.mp42 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Li, M. Gecevicius, J. Qiu, Chem. Soc. Rev. 2016, 45, 2090–2136.
- 2
- 2aS. M. A. Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem. Int. Ed. 2017, 56, 12160–12164; Angew. Chem. 2017, 129, 12328–12332;
- 2bH. Gao, Z. Gao, D. Jiao, J. Zhang, X. Li, Q. Tang, Y. Shi, D. Ding, Small 2021, 17, 2005449;
- 2cZ. He, H. Gao, S. Zhang, S. Zheng, Y. Wang, Z. Zhao, D. Ding, B. Yang, Y. Zhang, W. Z. Yuan, Adv. Mater. 2019, 31, 1807222;
- 2dX.-K. Ma, Y.-M. Zhang, Q. Yu, H. Zhang, Z. Zhang, Y. Liu, Chem. Commun. 2021, 57, 1214–1217;
- 2eW.-L. Zhou, Y. Chen, Q. Yu, H. Zhang, Z.-X. Liu, X.-Y. Dai, J.-J. Li, Y. Liu, Nat. Commun. 2020, 11, 4655.
- 3
- 3aL. Huang, B. Chen, X. Zhang, C. O. Trindle, F. Liao, Y. Wang, H. Miao, Y. Luo, G. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16046–16050; Angew. Chem. 2018, 130, 16278–16282;
- 3bL. Zang, W. Shao, M. S. Kwon, Z. Zhang, J. Kim, Adv. Opt. Mater. 2020, 8, 2000654.
- 4
- 4aR. Kabe, N. Notsuka, K. Yoshida, C. J. A. M. Adachi, Adv. Mater. 2016, 28, 655–660;
- 4bX. Liu, L. Yang, X. Li, L. Zhao, S. Wang, Z.-H. Lu, J. Ding, L. Wang, Angew. Chem. Int. Ed. 2021, 60, 2455–2463; Angew. Chem. 2021, 133, 2485–2493;
- 4cL. Xiao, S.-J. Su, Y. Agata, H. Lan, J. Kido, Adv. Mater. 2009, 21, 1271–1274.
- 5
- 5aH. Li, H. Li, W. Wang, Y. Tao, S. Wang, Q. Yang, Y. Jiang, C. Zheng, W. Huang, R. Chen, Angew. Chem. Int. Ed. 2020, 59, 4756–4762; Angew. Chem. 2020, 132, 4786–4792;
- 5bY. Miao, S. Liu, L. Ma, W. Yang, J. Li, J. Lv, Anal. Chem. 2021, 93, 4075–4083;
- 5cY. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci. Adv. 2018, 4, eaas9732.
- 6W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 2020, 5, 869–885.
- 7S. Mukherjee, P. Thilagar, Chem. Commun. 2015, 51, 10988–11003.
- 8
- 8aW. Ye, H. Ma, H. Shi, H. Wang, A. Lv, L. Bian, M. Zhang, C. Ma, K. Ling, M. Gu, Y. Mao, X. Yao, C. Gao, K. Shen, W. Jia, J. Zhi, S. Cai, Z. Song, J. Li, Y. Zhang, S. Lu, K. Liu, C. Dong, Q. Wang, Y. Zhou, W. Yao, Y. Zhang, H. Zhang, Z. Zhang, X. Hang, Z. An, X. Liu, W. Huang, Nat. Mater. 2021, 20, 1539–1544;
- 8bZ. Yin, M. Gu, H. Ma, X. Jiang, J. Zhi, Y. Wang, H. Yang, W. Zhu, Z. An, Angew. Chem. Int. Ed. 2021, 60, 2058–2063; Angew. Chem. 2021, 133, 2086–2091;
- 8cH. Zhang, H. Ma, W. Huang, W. Gong, Z. He, G. Huang, B. S. Li, B. Z. Tang, Mater. Horiz. 2021, 8, 2816-2822;
- 8dS. Zheng, T. Zhu, Y. Wang, T. Yang, W. Z. Yuan, Angew. Chem. Int. Ed. 2020, 59, 10018–10022; Angew. Chem. 2020, 132, 10104–10108;
- 8eJ. Zhou, L. Stojanović, A. A. Berezin, T. Battisti, A. Gill, B. M. Kariuki, D. Bonifazi, R. Crespo-Otero, M. R. Wasielewski, Y.-L. Wu, Chem. Sci. 2021, 12, 767–773.
- 9
- 9aP. Wu, H. Zheng, P. Cao, Y. Wang, X. Lu, Angew. Chem. Int. Ed. 2021, 60, 9500–9506; Angew. Chem. 2021, 133, 9586–9592;
- 9bZ. Wu, J. Nitsch, J. Schuster, A. Friedrich, K. Edkins, M. Loebnitz, F. Dinkelbach, V. Stepanenko, F. Würthner, C. M. Marian, L. Ji, T. B. Marder, Angew. Chem. Int. Ed. 2020, 59, 17137–17144; Angew. Chem. 2020, 132, 17285–17292;
- 9cZ. Xu, C. Climent, C. M. Brown, D. Hean, C. J. Bardeen, D. Casanova, M. O. Wolf, Chem. Sci. 2021, 12, 188–195;
- 9dJ. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840;
- 9eZ. Yang, C. Xu, W. Li, Z. Mao, X. Ge, Q. Huang, H. Deng, J. Zhao, F. L. Gu, Y. Zhang, Z. Chi, Angew. Chem. Int. Ed. 2020, 59, 17451–17455; Angew. Chem. 2020, 132, 17604–17608.
- 10
- 10aH. Li, H. Li, J. Gu, F. He, H. Peng, Y. Tao, D. Tian, Q. Yang, P. Li, C. Zheng, W. Huang, R. Chen, Chem. Sci. 2021, 12, 3580–3586;
- 10bS. Li, L. Fu, X. Xiao, H. Geng, Q. Liao, Y. Liao, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 18059–18064; Angew. Chem. 2021, 133, 18207-18212;
- 10cW. Liu, J. Wang, Y. Gong, Q. Liao, Q. Dang, Z. Li, Z. Bo, Angew. Chem. Int. Ed. 2020, 59, 20161–20166; Angew. Chem. 2020, 132, 20336–20341;
- 10dY. Liu, Z. Ma, J. Liu, M. Chen, Z. Ma, X. Jia, Adv. Opt. Mater. 2021, 9, 2001685;
- 10eY. Shoji, Y. Ikabata, Q. Wang, D. Nemoto, A. Sakamoto, N. Tanaka, J. Seino, H. Nakai, T. Fukushima, J. Am. Chem. Soc. 2017, 139, 2728–2733.
- 11
- 11aC. Dong, X. Wang, W. Gong, W. Ma, M. Zhang, J. Li, Y. Zhang, Z. Zhou, Z. Yang, S. Qu, Q. Wang, Z. Zhao, G. Yang, A. Lv, H. Ma, Q. Chen, H. Shi, Y. Yang, Z. An, Angew. Chem. Int. Ed. 2021, https://doi.org/10.1002/anie.202109802; Angew. Chem. 2021, https://doi.org/10.1002/ange.202109802;
- 11bO. Bolton, K. Lee, H.-J. Kim, K. Y. Lin, J. Kim, Nat. Chem. 2011, 3, 205–210;
- 11cJ. Chen, X. Chen, Y. Liu, Y. Li, J. Zhao, Z. Yang, Y. Zhang, Z. Chi, Chem. Sci. 2021, 12, 9201–9206;
- 11dC. Demangeat, Y. Dou, B. Hu, Y. Bretonnière, C. Andraud, A. D'Aléo, J. W. Wu, E. Kim, T. Le Bahers, A.-J. Attias, Angew. Chem. Int. Ed. 2021, 60, 2446–2454; Angew. Chem. 2021, 133, 2476–2484;
- 11eL. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photonics 2019, 13, 406–411;
- 11fZ. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416.
- 12
- 12aY. Tian, J. Yang, Z. Liu, M. Gao, X. Li, W. Che, M. Fang, Z. Li, Angew. Chem. Int. Ed. 2021, 60, 20259–20263; Angew. Chem. 2021, 133, 20421–20425;
- 12bY. Wang, H. Gao, J. Yang, M. Fang, D. Ding, B. Z. Tang, Z. Li, Adv. Mater. 2021, 33, 2007811;
- 12cJ. Wei, B. Liang, R. Duan, Z. Cheng, C. Li, T. Zhou, Y. Yi, Y. Wang, Angew. Chem. Int. Ed. 2016, 55, 15589–15593; Angew. Chem. 2016, 128, 15818–15822;
- 12dZ. Xie, X. Zhang, H. Wang, C. Huang, H. Sun, M. Dong, L. Ji, Z. An, T. Yu, W. Huang, Nat. Commun. 2021, 12, 3522;
- 12eJ. Zhang, S. Xu, Z. Wang, P. Xue, W. Wang, L. Zhang, Y. Shi, W. Huang, R. Chen, Angew. Chem. Int. Ed. 2021, 60, 17094–17101; Angew. Chem. 2021, 133, 17231–17238.
- 13
- 13aY. Ning, J. Yang, H. Si, H. Wu, X. Zheng, A. Qin, B. Z. Tang, Sci. China Chem. 2021, 64, 739–744;
- 13bT. Ono, A. Taema, A. Goto, Y. Hisaeda, Chem. Eur. J. 2018, 24, 17487–17496;
- 13cY. Su, Y. Zhang, Z. Wang, W. Gao, P. Jia, D. Zhang, C. Yang, Y. Li, Y. Zhao, Angew. Chem. Int. Ed. 2020, 59, 9967–9971; Angew. Chem. 2020, 132, 10053–10057;
- 13dS. Sun, J. Wang, L. Ma, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 18557–18560; Angew. Chem. 2021, 133, 18705–18708.
- 14
- 14aB. Chen, W. Huang, X. Nie, F. Liao, H. Miao, X. Zhang, G. Zhang, Angew. Chem. Int. Ed. 2021, 60, 16970–16973; Angew. Chem. 2021, 133, 17107–17110;
- 14bK. Jinnai, R. Kabe, C. Adachi, Adv. Mater. 2018, 30, 1800365;
- 14cY. Lei, W. Dai, J. Guan, S. Guo, F. Ren, Y. Zhou, J. Shi, B. Tong, Z. Cai, J. Zheng, Y. Dong, Angew. Chem. Int. Ed. 2020, 59, 16054–16060; Angew. Chem. 2020, 132, 16188–16194;
- 14dL. Ma, S. Sun, B. Ding, X. Ma, H. Tian, Adv. Funct. Mater. 2021, 31, 2010659;
- 14eB. Ding, L. Ma, Z. Huang, X. Ma, H. Tian, Sci. Adv. 2021, 7, eabf9668;
- 14fS. Kuila, S. Garain, S. Bandi, S. J. George, Adv. Funct. Mater. 2020, 30, 2003693.
- 15
- 15aH. Wu, D. Wang, Z. Zhao, D. Wang, Y. Xiong, B. Z. Tang, Adv. Funct. Mater. 2021, 31, 2101656;
- 15bZ.-A. Yan, X. Lin, S. Sun, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 19735–19739; Angew. Chem. 2021, 133, 19887–19891;
- 15cY. Yang, J. Wang, D. Li, J. Yang, M. Fang, Z. Li, Adv. Mater. 2021, 33, 2104002;
- 15dY. Zhang, L. Gao, X. Zheng, Z. Wang, C. Yang, H. Tang, L. Qu, Y. Li, Y. Zhao, Nat. Commun. 2021, 12, 2297;
- 15eY. Zhang, Y. Su, H. Wu, Z. Wang, C. Wang, Y. Zheng, X. Zheng, L. Gao, Q. Zhou, Y. Yang, X. Chen, C. Yang, Y. Zhao, J. Am. Chem. Soc. 2021, 143, 13675–13685.
- 16
- 16aX. Lin, J. Wang, B. Ding, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2021, 60, 3459–3463; Angew. Chem. 2021, 133, 3501–3505;
- 16bX. Ma, C. Xu, J. Wang, H. Tian, Angew. Chem. Int. Ed. 2018, 57, 10854–10858; Angew. Chem. 2018, 130, 11020–11024;
- 16cT. Ogoshi, H. Tsuchida, T. Kakuta, T. Yamagishi, A. Taema, T. Ono, M. Sugimoto, M. J. A. F. M. Mizuno, Adv. Funct. Mater. 2018, 28, 1707369;
- 16dH. Wang, H. Shi, W. Ye, X. Yao, Q. Wang, C. Dong, W. Jia, H. Ma, S. Cai, K. Huang, L. Fu, Y. Zhang, J. Zhi, L. Gu, Y. Zhao, Z. An, W. Huang, Angew. Chem. Int. Ed. 2019, 58, 18776–18782; Angew. Chem. 2019, 131, 18952–18958;
- 16eZ. Wang, Y. Zheng, Y. Su, L. Gao, Y. Zhu, J. Xia, Y. Zhang, C. Wang, X. Zheng, Y. Zhao, C. Yang, Y. Li, Sci. China Mater. 2021, https://doi.org/10.1007/s40843-021-1768-6.
- 17
- 17aS. Cai, H. Ma, H. Shi, H. Wang, X. Wang, L. Xiao, W. Ye, K. Huang, X. Cao, N. Gan, C. Ma, M. Gu, L. Song, H. Xu, Y. Tao, C. Zhang, W. Yao, Z. An, W. Huang, Nat. Commun. 2019, 10, 4247;
- 17bX. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W. Z. Yuan, Adv. Mater. 2020, 32, 2004768;
- 17cS. Garain, S. Kuila, B. C. Garain, M. Kataria, A. Borah, S. K. Pati, S. J. George, Angew. Chem. Int. Ed. 2021, 60, 12323–12327; Angew. Chem. 2021, 133, 12431–12435;
- 17dM. S. Kwon, Y. Yu, C. Coburn, A. W. Phillips, K. Chung, A. Shanker, J. Jung, G. Kim, K. Pipe, S. R. Forrest, J. H. Youk, J. Gierschner, J. Kim, Nat. Commun. 2015, 6, 8947;
- 17eY. Li, F. Gu, B. Ding, L. Zou, X. Ma, Sci. China Chem. 2021, 64, 1297–1301;
- 17fY. Li, L. Jiang, W. Liu, S. Xu, T.-Y. Li, F. Fries, O. Zeika, Y. Zou, C. Ramanan, S. Lenk, R. Scholz, D. Andrienko, X. Feng, K. Leo, S. Reineke, Adv. Mater. 2021, 33, 2101844.
- 18
- 18aI. Bhattacharjee, S. Hirata, Adv. Mater. 2020, 32, 2001348;
- 18bS. Hirata, K. Totani, J. Zhang, T. Yamashita, H. Kaji, S. R. Marder, T. Watanabe, C. Adachi, Adv. Funct. Mater. 2013, 23, 3386–3397.
- 19
- 19aP. Wei, X. Zhang, J. Liu, G.-G. Shan, H. Zhang, J. Qi, W. Zhao, H. H.-Y. Sung, I. D. Williams, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 9293–9298; Angew. Chem. 2020, 132, 9379–9384;
- 19bZ.-Y. Zhang, Y. Chen, Y. Liu, Angew. Chem. Int. Ed. 2019, 58, 6028–6032; Angew. Chem. 2019, 131, 6089–6093;
- 19cZ.-Y. Zhang, Y. Liu, Chem. Sci. 2019, 10, 7773–7778;
- 19dZ.-Y. Zhang, W.-W. Xu, W.-S. Xu, J. Niu, X.-H. Sun, Y. Liu, Angew. Chem. Int. Ed. 2020, 59, 18748–18754; Angew. Chem. 2020, 132, 18907–18913.
- 20
- 20aH. Chen, X. Ma, S. Wu, H. Tian, Angew. Chem. Int. Ed. 2014, 53, 14149–14152; Angew. Chem. 2014, 126, 14373–14376;
- 20bD. Li, F. Lu, J. Wang, W. Hu, X.-M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 2018, 140, 1916–1923;
- 20cX.-K. Ma, W. Zhang, Z. Liu, H. Zhang, B. Zhang, Y. Liu, Adv. Mater. 2021, 33, 2007476;
- 20dF.-F. Shen, Y. Chen, X. Dai, H.-Y. Zhang, B. Zhang, Y. Liu, Y. Liu, Chem. Sci. 2021, 12, 1851–1857.
- 21
- 21aT. Wang, Z. Hu, X. Nie, L. Huang, M. Hui, X. Sun, G. Zhang, Nat. Commun. 2021, 12, 1364;
- 21bX.-F. Wang, H. Xiao, P.-Z. Chen, Q.-Z. Yang, B. Chen, C.-H. Tung, Y.-Z. Chen, L.-Z. Wu, J. Am. Chem. Soc. 2019, 141, 5045–5050;
- 21cH. Wu, Y. Zhou, L. Yin, C. Hang, X. Li, H. Ågren, T. Yi, Q. Zhang, L. Zhu, J. Am. Chem. Soc. 2017, 139, 785–791;
- 21dJ. Yang, Y. Zhang, X. Wu, W. Dai, D. Chen, J. Shi, B. Tong, Q. Peng, H. Xie, Z. Cai, Y. Dong, X. Zhang, Nat. Commun. 2021, 12, 4883;
- 21eH.-J. Yu, Q. Zhou, X. Dai, F.-F. Shen, Y.-M. Zhang, X. Xu, Y. Liu, J. Am. Chem. Soc. 2021, 143, 13887–13894;
- 21fH. Zhu, I. Badía-Domínguez, B. Shi, Q. Li, P. Wei, H. Xing, M. C. Ruiz Delgado, F. Huang, J. Am. Chem. Soc. 2021, 143, 2164–2169.
- 22
- 22aS. Cai, Z. Sun, H. Wang, X. Yao, H. Ma, W. Jia, S. Wang, Z. Li, H. Shi, Z. An, Y. Ishida, T. Aida, W. Huang, J. Am. Chem. Soc. 2021, 143, 16256–16263;
- 22bS. Garain, B. C. Garain, M. Eswaramoorthy, S. K. Pati, S. J. George, Angew. Chem. Int. Ed. 2021, 60, 19720–19724; Angew. Chem. 2021, 133, 19872–19876;
- 22cS. Kuila, K. V. Rao, S. Garain, P. K. Samanta, S. Das, S. K. Pati, M. Eswaramoorthy, S. J. George, Angew. Chem. Int. Ed. 2018, 57, 17115–17119; Angew. Chem. 2018, 130, 17361–17365;
- 22dY. Liu, X. Huang, Z. Niu, D. Wang, H. Gou, Q. Liao, K. Xi, Z. An, X. Jia, Chem. Sci. 2021, 12, 8199–8206;
- 22eJ. Ren, Y. Wang, Y. Tian, Z. Liu, X. Xiao, J. Yang, M. Fang, Z. Li, Angew. Chem. Int. Ed. 2021, 60, 12335–12340; Angew. Chem. 2021, 133, 12443–12448;
- 22fY. Shoji, Y. Ikabata, I. Ryzhii, R. Ayub, O. El Bakouri, T. Sato, Q. Wang, T. Miura, B. S. B. Karunathilaka, Y. Tsuchiya, C. Adachi, H. Ottosson, H. Nakai, T. Ikoma, T. Fukushima, Angew. Chem. Int. Ed. 2021, 60, 21817–21823; Angew. Chem. 2021, 133, 21988–21994;
- 22gJ. Tan, Q. Li, S. Meng, Y. Li, J. Yang, Y. Ye, Z. Tang, S. Qu, X. Ren, Adv. Mater. 2021, 33, 2006781.
- 23J.-J. Li, H.-Y. Zhang, Y. Zhang, W.-L. Zhou, Y. Liu, Adv. Opt. Mater. 2019, 7, 1900589.
- 24
- 24aY. Liu, C. Li, Z. Ren, S. Yan, M. R. Bryce, Nat. Rev. Mater. 2018, 3, 18020;
- 24bT. Li, D. Yang, L. Zhai, S. Wang, B. Zhao, N. Fu, L. Wang, Y. Tao, W. Huang, Adv. Sci. 2017, 4, 1600166;
- 24cM. Luo, X. Li, L. Ding, G. Baryshnikov, S. Shen, M. Zhu, L. Zhou, M. Zhang, J. Lu, H. Ågren, X.-d. Wang, L. Zhu, Angew. Chem. Int. Ed. 2020, 59, 17018–17025; Angew. Chem. 2020, 132, 17166–17173;
- 24dS. Kuila, S. J. George, Angew. Chem. Int. Ed. 2020, 59, 9393–9397; Angew. Chem. 2020, 132, 9479–9483;
- 24eL. Zhang, R. Zhang, P. Cui, W. Cao, F. Gao, Chem. Commun. 2013, 49, 8102–8104.
- 25
- 25aK. I. Assaf, W. M. Nau, Supramol. Chem. 2014, 26, 657–669;
- 25bL. Fusaro, E. Locci, A. Lai, M. Luhmer, J. Phys. Chem. B 2008, 112, 15014–15020.
- 26
- 26aT. K. Ahn, T. J. Avenson, M. Ballottari, Y.-C. Cheng, K. K. Niyogi, R. Bassi, G. R. Fleming, Science 2008, 320, 794;
- 26bN. E. Holt, D. Zigmantas, L. Valkunas, X.-P. Li, K. K. Niyogi, G. R. Fleming, Science 2005, 307, 433;
- 26cG. D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle, Nat. Chem. 2011, 3, 763–774.
- 27S. Zhou, A. G. Edwards, K. D. Cook, G. J. Van Berkel, Anal. Chem. 1999, 71, 769–776.
- 28H.-Q. Peng, L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Chem. Rev. 2015, 115, 7502–7542.
- 29
- 29aJ.-J. Li, Y. Chen, J. Yu, N. Cheng, Y. Liu, Adv. Mater. 2017, 29, 1701905;
- 29bZ. Xu, S. Peng, Y.-Y. Wang, J.-K. Zhang, A. I. Lazar, D.-S. Guo, Adv. Mater. 2016, 28, 7666–7671.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.