Controlling Oxidative Addition and Reductive Elimination at Tin(I) via Hemi-Lability
Dr. Alexa Caise
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorAgamemnon E. Crumpton
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Petra Vasko
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
Search for more papers by this authorDr. Jamie Hicks
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCaitilín McManus
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Nicholas H. Rees
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCorresponding Author
Prof. Simon Aldridge
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Alexa Caise
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorAgamemnon E. Crumpton
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Petra Vasko
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
Search for more papers by this authorDr. Jamie Hicks
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCaitilín McManus
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorDr. Nicholas H. Rees
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorCorresponding Author
Prof. Simon Aldridge
Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR UK
Search for more papers by this authorAbstract
We report on the synthesis of a distannyne supported by a pincer ligand bearing pendant amine donors that is capable of reversibly activating E-H bonds at one or both of the tin centres through dissociation of the hemi-labile N-Sn donor/acceptor interactions. This chemistry can be exploited to sequentially (and reversibly) assemble mixed-valence chains of tin atoms of the type ArSn{Sn(Ar)H}nSnAr (n=1, 2). The experimentally observed (decreasing) propensity towards chain growth with increasing chain length can be rationalized both thermodynamically and kinetically by the electron- withdrawing properties of the -Sn(Ar)H- backbone units generated via oxidative addition.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114926-sup-0001-cif.zip1.1 MB | Supporting Information |
ange202114926-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1See, for example: J. F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books, Sausalito, CA, 2010.
- 2See for example:
- 2aN. L. Dunn, M. Ha, A. T. Radosevich, J. Am. Chem. Soc. 2012, 134, 11330–11333;
- 2bO. Planas, F. Wang, M. Leutzsch, J. Cornella, Science 2020, 367, 313–317.
- 3For a broad-ranging comparative discussion of Main Group elements and Transition Metals see:
- 3aP. P. Power, Nature 2010, 463, 171–177; See also:
- 3bC. Weetman, S. Inoue, ChemCatChem 2018, 10, 4213–4228.
- 4For reviews of the reacivity of singlet carbenes/heavier metallylene see, for example:
- 4aD. Martin, M. Soleilhavoup, G. Bertrand, Chem. Sci. 2011, 2, 389–399; See also
- 4bY. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev. 2009, 109, 3479–3511;
- 4cS. Yao, Y. Xiong, M. Driess, Organometallics 2011, 30, 1748–1767;
- 4dT. Chu, G. I. Nikonov, Chem. Rev. 2018, 118, 3608–3680.
- 5For reversible E-H bond activation at main group element centres, see for example:
- 5aJ. P. Moerdyk, G. A. Blake, D. T. Chaes, C. W. Bielawski, J. Am. Chem. Soc. 2013, 135, 18798–18801;
- 5bC. Ganesamoorthy, S. Loerke, C. Gemel, P. Jerabek, M. Winter, G. Frenking, R. A. Fischer, Chem. Commun. 2013, 49, 2858–2860;
- 5cT. Chu, I. Korobkov, G. I. Nikonov, J. Am. Chem. Soc. 2014, 136, 9195–9202;
- 5dK. Inomata, T. Watanabe, Y. Miyazaki, H. Tobita, J. Am. Chem. Soc. 2015, 137, 11935–11937;
- 5eR. Rodriguez, Y. Contie, Y. Mao, N. Saffon-Merceron, A. Baceiredo, V. Branchadell, T. Kato, Angew. Chem. Int. Ed. 2015, 54, 15276–15279; Angew. Chem. 2015, 127, 15491–15494;
- 5fR. Rodriguez, Y. Contie, R. Nougué, A. Baceiredo, N. Saffon-Merceron, J.-M. Sotiropoulos, T. Kato, Angew. Chem. Int. Ed. 2016, 55, 14355–14358; Angew. Chem. 2016, 128, 14567–14570;
- 5gS. Urwin, D. M. Rogers, G. S. Nichol, M. J. Cowley, Dalton Trans. 2016, 45, 13695–13699;
- 5hS. Wang, T. J. Sherbow, L. A. Berben, P. P. Power, J. Am. Chem. Soc. 2018, 140, 590–593;
- 5iR. C. Turnell-Ritson, J. S. Sapsford, R. T. Cooper, S. S. Lee, T. Földes, P. A. Hunt, I. Pápai, A. E. Ashley, Chem. Sci. 2018, 9, 8716–8722;
- 5jR. S. Falconer, G. S. Nichol, I. V. Smolyar, S. L. Cockroft, M. J. Cowley, Angew. Chem. Int. Ed. 2021, 60, 2047–2052; Angew. Chem. 2021, 133, 2075–2080.
- 6For other reversible small molecule activation processes occurring at main group element centres see, for example:
- 6aY. Peng, B. D. Ellis, X. Wang, J. C. Fettinger, P. P. Power, Science 2009, 325, 1668–1670;
- 6bR. Rodriguez, D. Gau, T. Kato, N. Saffon-Merceron, A. De Cózar, F. P. Cossío, A. Baceiredo, Angew. Chem. Int. Ed. 2011, 50, 10414–10416; Angew. Chem. 2011, 123, 10598–10600;
- 6cF. Lips, J. C. Fettinger, A. Mansikkamäki, H. M. Tuononen, P. P. Power, J. Am. Chem. Soc. 2014, 136, 634–637;
- 6dA. V. Protchenko, D. Dange, M. P. Blake, A. D. Schwarz, C. Jones, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2014, 136, 10902–10905;
- 6eJ. W. Dube, C. M. E. Graham, C. L. B. Macdonald, Z. D. Brown, P. P. Power, P. J. Ragogna, Chem. Eur. J. 2014, 20, 6739–6744;
- 6fJ. D. Erickson, J. C. Fettinger, P. P. Power, Inorg. Chem. 2015, 54, 1940–1948;
- 6gJ. Hicks, P. Vasko, J. M. Goicoechea, S. Aldridge, J. Am. Chem. Soc. 2019, 141, 11000–11003;
- 6hC. Bakewell, A. J. P. White, M. R. Crimmin, Chem. Sci. 2019, 10, 2452–2458;
- 6iC. Bakewell, M. Garçon, R. Y. Kong, L. O'Hare, A. J. P. White, M. R. Crimmin, Inorg. Chem. 2020, 59, 4608–4616.
- 7A. Caise, L. P. Griffin, A. Heilmann, C. McManus, J. Campos, S. Aldridge, Angew. Chem. Int. Ed. 2021, 60, 15606–15612; Angew. Chem. 2021, 133, 15734–15740.
- 8
- 8aP. J. Davidson, D. H. Harris, M. F. Lappert, J. Chem. Soc. Dalton Trans. 1976, 2268–2274;
- 8bD. E. Goldberg, D. H. Harris, M. F. Lappert, K. M. Thomas, J. Chem. Soc. Chem. Commun. 1976, 261–262.
- 9
- 9aK. Tamao, K. Nagata, M. Asahara, A. Kawachi, Y. Ito, M. Shiro, J. Am. Chem. Soc. 1995, 117, 11592–11593;
- 9bA. Toshimitsu, S. Hirao, T. Saeki, M. Asahara, K. Tamao, Heteroat. Chem. 2001, 12, 392–397.
- 10Lithiation of 2,6(iPr2NCH2)2C6H3Br followed by reaction with SnCl2 gives a crystalline material formulated as ArNiPr2SnCl0.6Br0.4 (based on 119Sn NMR data), which can be used for further reaction chemistry. ArNiPr2SnBr can be prepared selectively by using SnBr2 instead of SnCl2, and ArNiPr2SnI then synthesized from the bromide via reaction with Me3SiI (see ESI for synthetic details).
- 11S. P. Green, C. Jones, A. Stasch, Science 2007, 318, 1754–1757.
- 12M. Novák, M. Bouška, L. Dostál, A. Růžička, A. Hoffmann, S. Herres-Pawlis, R. Jambor, Chem. Eur. J. 2015, 21, 7820–7829.
- 13R. Jambor, B. Kašná, K. N. Kirschner, M. Schürmann, K. Jurkschat, Angew. Chem. Int. Ed. 2008, 47, 1650–1653; Angew. Chem. 2008, 120, 1674–1677.
- 14S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky, J. P. Demers, A. Lange, D. Stalke, J. Am. Chem. Soc. 2011, 133, 17889–17894.
- 15V. Y. Lee, T. Fukawa, M. Nakamoto, A. Sekiguchi, B. L. Tumanskii, M. Karni, Y. Apeloig, J. Am. Chem. Soc. 2006, 128, 11643–11651.
- 16A. D. Phillips, R. J. Wright, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2002, 124, 5930–5931.
- 17B. E. Eichler, B. L. Phillips, P. P. Power, M. P. Augustine, Inorg. Chem. 2000, 39, 5450–5453.
- 18
- 18aB. Wrackmeyer in Tin Chemistry. Fundamentals, Frontiers and Applications (Eds.: A. G. Davies, M. Gielen, K. H. Pannel, E. R. T. Tiekink), Wiley, Chichester, 2008, pp. 17–52. For recent examples relating to the coordination of weak additional donors at tine see, for example:
10.1002/9780470758090.ch2 Google Scholar
- 18bJ. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 9557–9561; Angew. Chem. 2012, 124, 9695–9699;
- 18cC. P. Sindlinger, F. S. W. Aicher, L. Wesemann, Inorg. Chem. 2017, 56, 548–560.
- 19For a related example of E-H reductive elimination at tin, see:
- 19aF. Diab, F. S. W. Aicher, C. P. Sindlinger, K. Eichele, H. Schubert, L. Wesemann, Chem. Eur. J. 2019, 25, 4426–4434; See also:
- 19bC. P. Sindlinger, L. Wesemann, Chem. Sci. 2014, 5, 2739–2746;
- 19cC. P. Sindlinger, A. Stasch, H. F. Bettinger, L. Wesemann, Chem. Sci. 2015, 6, 4737–4751;
- 19dC. P. Sindlinger, W. Grahneis, F. S. W. Aicher, L. Wesemann, Chem. Eur. J. 2016, 22, 7554–7566;
- 19eC. P. Sindlinger, F. S. W. Aicher, H. Schubert, L. Wesemann, Angew. Chem. Int. Ed. 2017, 56, 2198–2202; Angew. Chem. 2017, 129, 2232–2236.
- 20L. W. Pineda, V. Jancik, K. Starke, R. B. Oswald, H. W. Roesky, Angew. Chem. Int. Ed. 2006, 45, 2602–2605; Angew. Chem. 2006, 118, 2664–2667.
- 21S. Khan, P. P. Samuel, R. Michel, J. M. Dieterich, R. A. Mata, J.-P. Demers, A. Lange, H. W. Roesky, D. Stalke, Chem. Commun. 2012, 48, 4890.
- 22A. Jana, H. W. Roesky, C. Schulzke, A. Döring, Angew. Chem. Int. Ed. 2009, 48, 1106–1109; Angew. Chem. 2009, 121, 1126–1129.
- 23T. J. Hadlington, C. E. Kefalidis, L. Maron, C. Jones, ACS Catal. 2017, 7, 1853–1859.
- 24J. J. Maudrich, C. P. Sindlinger, F. S. W. Aicher, K. Eichele, H. Schubert, L. Wesemann, Chem. Eur. J. 2017, 23, 2192–2200.
- 25Cooling such a solution comprised of equimolar quantities of 2/4 to ca. 190 K does lead to the appearance of additional signals in the 1H NMR spectrum of the mixture, although given the broadness of the spectrum it is difficult to ascertain whether these arise from the formation of 5 at low temperatures, or from the slowing of fluxional processes associated with 2/4. Low temperature 119Sn NMR is also hampered by significant signal broadening below 243 K.
- 26A. V. Protchenko, J. I. Bates, L. M. A. Saleh, M. P. Blake, A. D. Schwarz, E. L. Kolychev, A. L. Thompson, C. Jones, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2016, 138, 4555–4564.
- 27J. Li, M. Hermann, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 8611–8614; Angew. Chem. 2012, 124, 8739–8742.
- 28J. A. Kelly, M. Juckel, T. J. Hadlington, I. Fernández, G. Frenking, C. Jones, Chem. Eur. J. 2019, 25, 2773–2785.
- 29See, for example: A. Caise, D. Jones, E. L. Kolychev, J. Hicks, J. M. Goicoechea, S. Aldridge, Chem. Eur. J. 2018, 24, 13624–13635.
- 30Deposition Numbers 2094340, 2094341, 2094342, 2094343, 2094344, 2094345 and 2094346 contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.