Diammonium Molecular Configuration-Induced Regulation of Crystal Orientation and Carrier Dynamics for Highly Efficient and Stable 2D/3D Perovskite Solar Cells
Yang Zhong
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
These authors contributed equally to this work.
Search for more papers by this authorGengling Liu
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
These authors contributed equally to this work.
Search for more papers by this authorYang Su
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorWangping Sheng
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorLingyun Gong
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorJiaqi Zhang
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Licheng Tan
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yiwang Chen
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Institute of Advanced Scientific Research (iASR)/, Key Laboratory of Functional Organic Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorYang Zhong
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
These authors contributed equally to this work.
Search for more papers by this authorGengling Liu
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
These authors contributed equally to this work.
Search for more papers by this authorYang Su
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorWangping Sheng
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorLingyun Gong
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorJiaqi Zhang
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Licheng Tan
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yiwang Chen
College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 China
Institute of Advanced Scientific Research (iASR)/, Key Laboratory of Functional Organic Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022 China
Search for more papers by this authorAbstract
The effects from the molecular configuration of diammonium spacer cations on 2D/3D perovskite properties are still unclear. Here, we investigated systematically the mechanism of molecular configuration-induced regulation of crystallization kinetic and carrier dynamics by employing various diammonium molecules to construct Dion-Jacobson (DJ)-type 2D/3D perovskites to further facilitating the photovoltaic performance. The minimum average Pb-I-Pb angle leads to the smallest octahedral tilting of [PbX6]4− lattice in optimal diammonium molecule-incorporated DJ-type 2D/3D perovskite, which enables suitable binding energy and hydrogen-bonding between spacer cations and inorganic [PbX6]4− cages, thus contributing to the formation of high-quality perovskite film with vertical crystal orientation, mitigatory lattice distortion and efficient carrier transportation. As a consequence, a dramatically improved device efficiency of 22.68 % is achieved with excellent moisture stability.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114588-sup-0001-misc_information.pdf1.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1A. Y. Mei, X. Li, L. F. Liu, Z. L. Ku, T. F. Liu, Y. G. Rong, M. Xu, M. Hu, J. Z. Chen, Y. Yang, M. Grätzel, H. W. Han, Science 2014, 345, 295–298.
- 2J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, S. I. Seok, Nano Lett. 2013, 13, 1764–1769.
- 3D. Shi, V. Adinolfi, R. Comin, M. J. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519–522.
- 4C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, Adv. Mater. 2014, 26, 1584–1589.
- 5J.-C. Blancon, J. Even, C. C. Stoumpos, M. G. Kanatzidis, A. D. Mohite, Nat. Nanotechnol. 2020, 15, 969–985.
- 6A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 7H. Min, D. Y. Lee, J. Kim, K. S. Lee, J. Kim, M. J. Pail, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. I. Seok, Nature 2021, 598, 444–450.
- 8F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turrl, C. Gerbaldi, Science 2016, 354, 203–206.
- 9N. G. Park, M. Grätzel, T. Myasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1, 16152.
- 10C. C. Boyd, R. Cheacharoen, T. Leijtens, M. D. McGehee, Chem. Rev. 2019, 119, 3418–3451.
- 11C. Zhang, Y. Wang, X. Lin, T. Wu, Q. Han, Y. Zhang, L. Han, J. Mater. Chem. A 2021, 9, 1372–1394.
- 12F. Zhang, K. Zhu, Adv. Energy Mater. 2020, 10, 1902579.
- 13J. Y. Kim, J.-W. Lee, H. S. Jung, H. Shin, N.-G. Park, Chem. Rev. 2020, 120, 7867–7918.
- 14X. Li, J. M. Hoffman, M. G. Kanatzidis, Chem. Rev. 2021, 121, 2230–2291.
- 15R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J. Xue, Y. Yang, Adv. Funct. Mater. 2019, 29, 1808843.
- 16H. Tsai, W. Nie, J.-C. Blancon, C. C. Stoumpos, R. Asadpour, B. Harutyunyan, A. J. Neukirch, R. Verduzco, J. J. Crochet, S. Tretiak, L. Pedesseau, J. Even, M. A. Alam, G. Gupta, J. Lou, P. M. Ajayan, M. J. Bedzyk, M. G. Kanatzidis, A. D. Mohite, Nature 2016, 536, 312–316.
- 17C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp, M. G. Kanatzidis, Chem. Mater. 2016, 28, 2852–2867.
- 18L. Mao, W. Ke, L. Pedesseau, Y. Wu, C. Katan, J. Even, M. R. Wasielewski, C. C. Stoumpos, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 3775–3783.
- 19L. N. Quan, M. Yuan, R. Comin, O. Voznyy, E. M. Beauregard, S. Hoogland, A. Buin, A. R. Kirmani, K. Zhao, A. Amassian, D. H. Kim, E. H. Sargent, J. Am. Chem. Soc. 2016, 138, 2649.
- 20R. Yang, R. Li, Y. Cao, Y. Wei, Y. Miao, W. L. Tan, X. Jiao, H. Chen, L. Zhang, Q. Chen, H. Zhang, W. Zou, Y. Wang, M. Yang, C. Yi, N. Wang, F. Gao, C. R. McNeill, T. Qin, J. Wang, W. Huang, Adv. Mater. 2018, 30, 1804771.
- 21A. H. Proppe, R. Q. Bermudez, H. Tan, O. Voznyy, S. O. Kelley, E. H. Sargent, J. Am. Chem. Soc. 2018, 140, 2890–2896.
- 22T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Müller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, S. G. Mhaisalkar, Adv. Mater. 2016, 28, 3653–3661.
- 23B. Saparov, D. B. Mitzi, Chem. Rev. 2016, 116, 4558–4596.
- 24T. Niu, J. Lu, X. Jia, Z. Xu, M. C. Tang, D. Barrit, N. Yuan, J. Ding, X. Zhang, Y. Fan, T. Luo, Y. Zhang, D. M. Smilgies, Z. Liu, A. Amassian, S. Jin, K. Zhao, S. Liu, Nano Lett. 2019, 19, 7181–7190.
- 25D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442–1446.
- 26A. Krishna, S. Gottis, M. K. Nazeeruddin, F. Sauvage, Adv. Funct. Mater. 2019, 29, 1806482.
- 27F. Li, J. Zhang, S. Jo, M. Qin, Z. Li, T. Liu, X. Lu, Z. Zhu, A. K.-Y. Jen, Small Methods 2020, 4, 1900831.
- 28D. Ghosh, D. Acharya, L. Pedesseau, C. Katan, J. Even, S. Tretiak, A. J. Neukirch, J. Mater. Chem. A 2020, 8, 22009–22022.
- 29S. Yu, M. Abdellah, T. Pullerits, K. Zheng, Z. Liang, Adv. Funct. Mater. 2021, 31, 2104342.
- 30M. Safdari, P. H. Svensson, M. T. Hoang, I. Oh, L. Kloo, J. M. Gardner, J. Mater. Chem. A 2016, 4, 15638–15646.
- 31H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang, A. Alsaedi, T. Hayat, X. Pan, S. Dai, Adv. Energy Mater. 2018, 8, 1800051.
- 32W. Ke, C. Chen, I. Spanopoulos, L. Mao, I. Hadar, X. Li, J. M. Hoffman, Z. Song, Y. Yan, M. G. Kanatzidis, J. Am. Chem. Soc. 2020, 142, 15049–15057.
- 33B.-E. Cohen, Y. Li, Q. Meng, L. Etgar, Nano Lett. 2019, 19, 2588–2597.
- 34P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu, F. Li, X. Liu, X. Hu, G. Shao, Y. Song, Adv. Mater. 2018, 30, 1805323.
- 35Y. Chen, Y. Sun, J. Peng, W. Zhang, X. Su, K. Zheng, T. Pullerits, Z. Liang, Adv. Energy Mater. 2017, 7, 1700162.
- 36C. Quarti, N. Marchal, D. Beljonne, J. Phys. Chem. Lett. 2018, 9, 3416–3424.
- 37C.-J. Tong, L. Li, L.-M. Liu, O. V. Prezhdo, ACS Energy Lett. 2018, 3, 1868–1874.
- 38T. Zhou, H. Lai, T. Liu, X. Wan, X. Zhang, Y. Liu, Y. Chen, Adv. Mater. 2019, 31, 1901242.
- 39M. E. F. Bouduban, V. I. E. Queloz, V. M. Caselli, K. T. Cho, A. R. Kirmani, S. Peak, C. R. Carmona, L. J. Richter, J. E. Moser, T. J. Savenije, M. K. Nazeeruddin, G. Grancini, J. Phys. Chem. Lett. 2019, 10, 5713–5720.
- 40S. Paek, C. R. Carmona, K. T. Cho, M. Franckevičius, H. Kim, H. Kanda, N. Drigo, K.-H. Lin, M. Pei, R. Gegevičius, H. J. Yun, H. Yang, P. A. Schouwink, C. Corminboeuf, A. M. Asiri, M. K. Nazeeruddin, Adv. Sci. 2020, 7, 2001014.
- 41X. Lian, J. Chen, M. Qin, Y. Zhang, S. Tian, X. Lu, G. Wu, H. Chen, Angew. Chem. Int. Ed. 2019, 58, 9409–9413; Angew. Chem. 2019, 131, 9509–9513.
- 42G. Wu, T. Yang, X. Li, N. Ahmad, X. Zhang, S. Yue, J. Zhou, Y. Li, H. Wang, X. Shi, S. Liu, K. Zhao, H. Zhou, Y. Zhang, Matter 2021, 4, 582.
- 43C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu, Y. Chen, X. He, G. Na, P. Liu, H. Zai, Y. Ge, Y. Lu, X. Ke, Y. Bai, S. Yang, P. Chen, Y. Li, M. Sui, L. Zhang, H. Zhou, Q. Chen, Nat. Commun. 2019, 10, 815.
- 44H. Wang, C. Zhu, L. Liu, S. Ma, P. Liu, J. Wu, C. Shi, Q. Du, Y. Hao, S. Xiang, H. Chen, P. Chen, Y. Bai, H. Zhou, Y. Li, Q. Chen, Adv. Mater. 2019, 31, 1904408.
- 45F. Li, X. Deng, F. Qi, Z. Li, D. Liu, D. Shen, M. Qin, S. Wu, F. Lin, S.-H. Jang, J. Zhang, X. Lu, D. Lei, C.-S. Lee, Z. Zhu, A. K.-Y. Jen, J. Am. Chem. Soc. 2020, 142, 20134–20142.
- 46Y. Huang, L. Li, Z. Liu, H. Jiao, Y. He, X. Wang, R. Zhu, D. Wang, J. Sun, Q. Chen, H. Zhou, J. Mater. Chem. A 2017, 5, 8537–8544.
- 47W. Xu, Y. Gao, W. Ming, F. He, J. Li, X.-H. Zhu, F. Kang, J. Li, G. Wei, Adv. Mater. 2020, 32, 2003965.
- 48S. Ravishankar, S. Gharibzadeh, C. Roldán-Carmona, G. Grancini, Y. Lee, M. Ralaiarisoa, A. M. Asiri, N. Koch, J. Bisquert, M. K. Nazeeruddin, Joule 2018, 2, 788–798.
- 49J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. F. A. M. van Hest, J. J. Berry, J. M. Luther, Z. C. Holman, M. D. McGehee, Science 2020, 367, 1097–1104.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.