Mesoporosity-Enabled Selectivity of Mesoporous Palladium-Based Nanocrystals Catalysts in Semihydrogenation of Alkynes
Hao Lv
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
These authors contributed equally to this work.
Search for more papers by this authorHuaiyu Qin
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
These authors contributed equally to this work.
Search for more papers by this authorMingzi Sun
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
Search for more papers by this authorFengrui Jia
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
Search for more papers by this authorCorresponding Author
Prof. Ben Liu
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorHao Lv
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
These authors contributed equally to this work.
Search for more papers by this authorHuaiyu Qin
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
These authors contributed equally to this work.
Search for more papers by this authorMingzi Sun
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
Search for more papers by this authorFengrui Jia
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Bolong Huang
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
Search for more papers by this authorCorresponding Author
Prof. Ben Liu
Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorAbstract
We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)-based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1-phenyl-1-propyne, all of which are remarkably better than commercial Lindlar catalysts. Mechanistic investigations ascribed high semihydrogenation selectivity to the continuous crystalline framework and penetrated mesoporous channel of catalysts that weakened the adsorption and interaction capacity of alkenes and thus inhibited over-hydrogenation of alkenes to industrially unfavorable alkanes. Density functional theory calculations further demonstrated that convex crystalline mesoporosity of nanobundles catalysts electronically optimized the coordination environment of Pd active sites and energetically changed hydrogenation trends, resulting in a superior semihydrogenation selectivity to targeted alkenes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114539-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Meemken, A. Baiker, Chem. Rev. 2017, 117, 11522–11569;
- 1bG. Vilé, D. Albani, N. Almora-Barrios, N. López, J. Pérez-Ramírez, ChemCatChem 2016, 8, 21–33;
- 1cX. Zhao, L. Zhou, W. Zhang, C. Hu, L. Dai, L. Ren, B. Wu, G. Fu, N. Zheng, Chem 2018, 4, 1080–1091;
- 1dT. Mitsudome, M. Yamamoto, Z. Maeno, T. Mizugaki, K. Jitsukawa, K. Kaneda, J. Am. Chem. Soc. 2015, 137, 13452–13455;
- 1eT. W. van Deelen, C. Hernández Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–970.
- 2
- 2aK. Liu, R. Qin, N. Zheng, J. Am. Chem. Soc. 2021, 143, 4483–4499;
- 2bM. Crespo-Quesada, A. Yarulin, M. Jin, Y. Xia, L. Kiwi-Minsker, J. Am. Chem. Soc. 2011, 133, 12787–12794;
- 2cD. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. Knop-Gericke, S. D. Jackson, R. Schlögl, Science 2008, 320, 86–89;
- 2dC. W. A. Chan, A. H. Mahadi, M. M.-J. Li, E. C. Corbos, C. Tang, G. Jones, W. C. H. Kuo, J. Cookson, C. M. Brown, P. T. Bishop, S. C. E. Tsang, Nat. Commun. 2014, 5, 5787;
- 2eL. Zhang, M. Zhou, A. Wang, T. Zhang, Chem. Rev. 2020, 120, 683–733;
- 2fD. Wu, W. Baaziz, B. Gu, M. Marinova, W. Y. Hernández, W. Zhou, E. I. Vovk, O. Ersen, O. V. Safonova, A. Addad, N. Nuns, A. Y. Khodakov, V. V. Ordomsky, Nat. Catal. 2021, 4, 595–606.
- 3
- 3aM. Macino, A. J. Barnes, S. M. Althahban, R. Qu, E. K. Gibson, D. J. Morgan, S. J. Freakley, N. Dimitratos, C. J. Kiely, X. Gao, A. M. Beale, D. Bethell, Q. He, M. Sankar, G. J. Hutchings, Nat. Catal. 2019, 2, 873–881;
- 3bM. Armbrüster, K. Kovnir, M. Behrens, D. Teschner, Y. Grin, R. Schlögl, J. Am. Chem. Soc. 2010, 132, 14745–14747;
- 3cM. Tejeda-Serrano, J. R. Cabrero-Antonino, V. Mainar-Ruiz, M. López-Haro, J. C. Hernández-Garrido, J. J. Calvino, A. Leyva-Pérez, A. Corma, ACS Catal. 2017, 7, 3721–3729;
- 3dD. Albani, M. Shahrokhi, Z. Chen, S. Mitchell, R. Hauert, N. López, J. Pérez-Ramírez, Nat. Commun. 2018, 9, 2634;
- 3eA. Han, J. Zhang, W. Sun, W. Chen, S. Zhang, Y. Han, Q. Feng, L. Zheng, L. Gu, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 2019, 10, 3787;
- 3fQ. Feng, S. Zhao, Y. Wang, J. Dong, W. Chen, D. He, D. Wang, J. Yang, Y. Zhu, H. Zhu, L. Gu, Z. Li, Y. Liu, R. Yu, J. Li, Y. Li, J. Am. Chem. Soc. 2017, 139, 7294–7301;
- 3gT. Ma, S. Wang, M. Chen, R. V. Maligal-Ganesh, L.-L. Wang, D. D. Johnson, M. J. Kramer, W. Huang, L. Zhou, Chem 2019, 5, 1235–1247;
- 3hS. Wang, Z.-J. Zhao, X. Chang, J. Zhao, H. Tian, C. Yang, M. Li, Q. Fu, R. Mu, J. Gong, Angew. Chem. Int. Ed. 2019, 58, 7668–7672; Angew. Chem. 2019, 131, 7750–7754;
- 3iY. Feng, W. Xu, B. Huang, Q. Shao, L. Xu, S. Yang, X. Huang, J. Am. Chem. Soc. 2020, 142, 962–972;
- 3jM. Chen, Y. Yan, M. Gebre, C. Ordonez, F. Liu, L. Qi, A. Lamkins, D. Jing, K. Dolge, B. Zhang, P. Heintz, D. P. Shoemaker, B. Wang, W. Huang, Angew. Chem. Int. Ed. 2021, 60, 18309–18317; Angew. Chem. 2021, 133, 18457–18465;
- 3kC. Shen, Y. Ji, P. Wang, S. Bai, M. Wang, Y. Li, X. Huang, Q. Shao, ACS Catal. 2021, 11, 5231–5239;
- 3lT.-L. Cui, W.-Y. Ke, W.-B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen, Angew. Chem. Int. Ed. 2016, 55, 9178–9182; Angew. Chem. 2016, 128, 9324–9328;
- 3mR. G. Rao, R. Blume, T. W. Hansen, E. Fuentes, K. Dreyer, S. Moldovan, O. Ersen, D. D. Hibbitts, Y. J. Chabal, R. Schlögl, J.-P. Tessonnier, Nat. Commun. 2017, 8, 340;
- 3nG. Chen, C. Xu, X. Huang, J. Ye, L. Gu, G. Li, Z. Tang, B. Wu, H. Yang, Z. Zhao, Z. Zhou, G. Fu, N. Zheng, Nat. Mater. 2016, 15, 564–569.
- 4
- 4aC. Zhu, D. Du, A. Eychmüller, Y. Lin, Chem. Rev. 2015, 115, 8896–8943;
- 4bV. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C. W. Wu, J. H. Kim, Y. Yamauchi, Adv. Mater. 2016, 28, 993–1010;
- 4cZ. Su, T. Chen, Small 2021, 17, 2005354.
- 5
- 5aH. Wang, H. Y. Jeong, M. Imura, L. Wang, L. Radhakrishnan, N. Fujita, T. Castle, O. Terasaki, Y. Yamauchi, J. Am. Chem. Soc. 2011, 133, 14526–14529;
- 5bH. Lv, A. Lopes, D. Xu, B. Liu, ACS Cent. Sci. 2018, 4, 1412–1419;
- 5cX. Huang, Y. Li, Y. Chen, E. Zhou, Y. Xu, H. Zhou, X. Duan, Y. Huang, Angew. Chem. Int. Ed. 2013, 52, 2520–2524; Angew. Chem. 2013, 125, 2580–2584;
- 5dH. Lv, D. Xu, J. Henzie, J. Feng, A. Lopes, Y. Yamauchi, B. Liu, Chem. Sci. 2019, 10, 6423–6430;
- 5eL. Zhang, S. Yu, J. Zhang, J. Gong, Chem. Sci. 2016, 7, 3500–3505;
- 5fQ. Lu, J. Rosen, Y. Zhou, G. S. Hutchings, Y. C. Kimmel, J. G. Chen, F. Jiao, Nat. Commun. 2014, 5, 3242;
- 5gT. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis, A. A. Gewirth, J. Am. Chem. Soc. 2018, 140, 5791–5797;
- 5hH. Lv, D. Xu, L. Sun, J. Henzie, A. Lopes, Q. Gu, Y. Yamauchi, B. Liu, Nano Lett. 2019, 19, 3379–3385;
- 5iH. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou, Adv. Mater. 2020, 32, 2002435;
- 5jY. Zhou, R. Zhou, X. Zhu, N. Han, B. Song, T. Liu, G. Hu, Y. Li, J. Lu, Y. Li, Adv. Mater. 2020, 32, 2000992;
- 5kH. Lv, F. Lv, H. Qin, X. Min, L. Sun, N. Han, D. Xu, Y. Li, B. Liu, CCS Chem. 2021, 3, 1435–1444.
- 6
- 6aG. Lin, H. Li, K. Xie, Angew. Chem. Int. Ed. 2020, 59, 16440–16444; Angew. Chem. 2020, 132, 16582–16586;
- 6bS. Han, C. Wang, Y. Wang, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4474–4478; Angew. Chem. 2021, 133, 4524–4528;
- 6cZ. Xia, S. Guo, Chem. Soc. Rev. 2019, 48, 3265–3278.
- 7
- 7aY. Yoon, A. S. Hall, Y. Surendranath, Angew. Chem. Int. Ed. 2016, 55, 15282–15286; Angew. Chem. 2016, 128, 15508–15512;
- 7bK. D. Yang, W. R. Ko, J. H. Lee, S. J. Kim, H. Lee, M. H. Lee, K. T. Nam, Angew. Chem. Int. Ed. 2017, 56, 796–800; Angew. Chem. 2017, 129, 814–818;
- 7cT.-T. Zhuang, Y. Pang, Z.-Q. Liang, Z. Wang, Y. Li, C.-S. Tan, J. Li, C. T. Dinh, P. De Luna, P.-L. Hsieh, T. Burdyny, H.-H. Li, M. Liu, Y. Wang, F. Li, A. Proppe, A. Johnston, D.-H. Nam, Z.-Y. Wu, Y.-R. Zheng, A. H. Ip, H. Tan, L.-J. Chen, S.-H. Yu, S. O. Kelley, D. Sinton, E. H. Sargent, Nat. Catal. 2018, 1, 946–951;
- 7dY. Feng, C.-Q. Cheng, C.-Q. Zou, X.-L. Zheng, J. Mao, H. Liu, Z. Li, C.-K. Dong, X.-W. Du, Angew. Chem. Int. Ed. 2020, 59, 19297–19303; Angew. Chem. 2020, 132, 19459–19465;
- 7eF. Naseem, P. Lu, J. Zeng, Z. Lu, Y. H. Ng, H. Zhao, Y. Du, Z. Yin, ACS Nano 2020, 14, 7734–7759;
- 7fP.-P. Yang, X.-L. Zhang, F.-Y. Gao, Y.-R. Zheng, Z.-Z. Niu, X. Yu, R. Liu, Z.-Z. Wu, S. Qin, L.-P. Chi, Y. Duan, T. Ma, X.-S. Zheng, J.-F. Zhu, H.-J. Wang, M.-R. Gao, S.-H. Yu, J. Am. Chem. Soc. 2020, 142, 6400–6408.
- 8H. Lv, D. Xu, C. Kong, Z. Liang, H. Zheng, Z. Huang, B. Liu, ACS Cent. Sci. 2020, 6, 2347–2353.
- 9S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 2000, 122, 10712–10713.
- 10
- 10aL. Chen, L. Lu, H. Zhu, Y. Chen, Y. Huang, Y. Li, L. Wang, Nat. Commun. 2017, 8, 14136;
- 10bH. Lv, D. Xu, L. Sun, J. Henzie, S. L. Suib, Y. Yamauchi, B. Liu, ACS Nano 2019, 13, 12052–12061.
- 11K. Jiang, K. Xu, S. Zou, W.-B. Cai, J. Am. Chem. Soc. 2014, 136, 4861–4864.
- 12I. Jbir, J. Couble, S. Khaddar-Zine, Z. Ksibi, F. Meunier, D. Bianchi, ACS Catal. 2016, 6, 2545–2558.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.