Watching Microwave-Induced Microscopic Hot Spots via the Thermosensitive Fluorescence of Europium/Terbium Mixed-Metal Organic Complexes
Dr. Zhenyu Zhao
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
These authors contributed equally to this work.
Search for more papers by this authorXi Shen
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Hong Li
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorKai Liu
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorHaoyu Wu
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorProf. Xingang Li
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Xin Gao
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorDr. Zhenyu Zhao
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
These authors contributed equally to this work.
Search for more papers by this authorXi Shen
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Hong Li
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorKai Liu
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorHaoyu Wu
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorProf. Xingang Li
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Xin Gao
School of Chemical Engineering and Technology in Tianjin University, National Engineering Research Center of Distillation Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350 China
Search for more papers by this authorAbstract
The hypothesis of microscopic hot spots is widely used to explain the unique microwave (MW) effect in materials science and chemical engineering, but it has not yet been directly measured. Herein we use Eu/Tb mixed-metal organic complexes as nano thermometers to probe the intrinsic temperature of MW-absorbing particles in MW fields based on the thermosensitive fluorescent spectra. According to the measurements of the temperature gradient at the solid/liquid interphase, we derive an MW-irradiated energy transfer model to predict the extent of microscopic hot spots. The fluorescence results agree with the model predictions that the MW-induced temperature gradient can be enlarged by increasing MW intensity, as well as the dielectric loss and size of particles. Conversely, the increase in the thermal conductivity and the dielectric loss of the liquid lowers the temperature gradient. This study enables control of MW-assisted synthesis and MW-responsive techniques.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114340-sup-0001-misc_information.pdf7.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Adv. Mater. 2021, 33, 2103477.
- 2
- 2aZ. Wang, C. Yu, H. Huang, W. Guo, J. Yu, J. Qiu, Nano Energy 2021, 85, 106027;
- 2bF. Xu, D. Wu, R. Fu, B. Wei, Mater. Today 2017, 20, 629–656;
- 2cM. Baghbanzadeh, L. Carbone, P. D. Cozzoli, C. O. Kappe, Angew. Chem. Int. Ed. 2011, 50, 11312–11359; Angew. Chem. 2011, 123, 11510–11561.
- 3
- 3aC. Oliver Kappe, B. Pieber, D. Dallinger, Angew. Chem. Int. Ed. 2013, 52, 1088–1094; Angew. Chem. 2013, 125, 1124–1130;
- 3bH. Li, C. Zhang, C. Pang, X. Li, X. Gao, Front. Chem. 2020, 8, 355.
- 4
- 4aH. Li, Z. Zhao, C. Xiouras, G. D. Stefanidis, X. Li, X. Gao, Renewable Sustainable Energy Rev. 2019, 114, 109316;
- 4bZ. Wang, X. Ma, J. Wei, N. Li, Fuel 2018, 222, 56–63;
- 4cX. Gao, D. Shu, X. Li, H. Li, Front. Chem. Sci. Eng. 2019, 13, 759–771.
- 5B. Fidalgo, Y. Fernandez, L. Zubizarreta, A. Arenillas, A. Dominguez, J. J. Pis, J. A. Menendez, Appl. Surf. Sci. 2008, 254, 3553–3557.
- 6T. Ji, R. Tu, L. Mu, X. Lu, J. Zhu, Appl. Catal. B 2018, 220, 581–588.
- 7
- 7aM. Gao, L. Wang, B. Zhao, X. Gu, T. Li, L. Huang, Q. Wu, S. Yu, S. Liu, Carbohydr. Polym. 2021, 255, 117397;
- 7bX. Wang, K. Xu, L. Ke, Q. Zhang, D. Jin, H. Shang, K. Rui, Y. Yan, H. Lin, J. Zhu, ACS Appl. Mater. Interfaces 2021, 13, 16594–16601;
- 7cS. Roy, R. Bajpai, R. P. Biro, H. D. Wagner, J. Mater. Sci. 2020, 55, 535–544;
- 7dD. Zhang, M. Han, Y. Li, J. He, B. Wang, K. Wang, H. Feng, J. Power Sources 2017, 372, 260–269.
- 8
- 8aH. Guo, H. Li, K. Jarvis, H. Wan, P. Kunal, S. G. Dunning, Y. Liu, G. Henkelman, S. M. Humphrey, ACS Catal. 2018, 8, 11386–11397;
- 8bH. Guo, Z. Fang, H. Li, D. Fernandez, G. Henkelman, S. M. Humphrey, G. Yu, ACS Nano 2019, 13, 13225–13234;
- 8cN. Dahal, S. García, J. Zhou, S. M. Humphrey, ACS Nano 2012, 6, 9433–9446.
- 9G. Zhong, S. Xu, Q. Dong, X. Wang, L. Hu, Adv. Funct. Mater. 2021, 31, 2010968.
- 10H. Huang, S. Zhou, C. Yu, H. Huang, J. Zhao, L. Dai, J. Qiu, Energy Environ. Sci. 2020, 13, 545–553.
- 11T. Gao, C. Zhou, Y. Zhang, Z. Jin, H. Yuan, D. Xiao, J. Mater. Chem. A 2018, 6, 21577–21584.
- 12R. Meng, C. Zhang, Z. Lu, X. Xie, Y. Liu, Q. Tang, H. Li, D. Kong, C. N. Geng, Y. Jiao, Z. Fan, Q. He, Y. Guo, G. Ling, Q. H. Yang, Adv. Energy Mater. 2021, 11, 2100683.
- 13
- 13aJ. Wu, J. Zhao, B. Vaidhyanathan, H. Zhang, A. Anshuman, A. Nare, S. Saremi-Yarahmadi, Materialia 2020, 13, 100833;
- 13bS. Tang, S. Jin, R. Zhang, Y. Liu, J. Wang, Z. Hu, W. Lu, S. Yang, W. Qiao, L. Ling, M. Jin, Appl. Surf. Sci. 2019, 473, 222–229;
- 13cR. Liu, Y. Zhang, Z. Ning, Y. Xu, Angew. Chem. Int. Ed. 2017, 56, 15677–15682; Angew. Chem. 2017, 129, 15883–15888;
- 13dY. Kang, X. Yu, M. Kota, H. S. Park, J. Alloys Compd. 2017, 726, 88–94.
- 14A. M. Schwenke, S. Hoeppener, U. S. Schubert, Adv. Mater. 2015, 27, 4113–4141.
- 15T. Druzhinina, W. Weltjens, S. Hoeppener, U. S. Schubert, Adv. Funct. Mater. 2009, 19, 1287–1292.
- 16Y. Tsukahara, A. Higashi, T. Yamauchi, T. Nakamura, M. Yasuda, A. Baba, Y. Wada, J. Phys. Chem. C 2010, 114, 8965–8970.
- 17
- 17aJ. S. Li, S. L. Li, Y. J. Tang, K. Li, L. Zhou, N. Kong, Y. Q. Lan, J. C. Bao, Z. H. Dai, Sci. Rep. 2014, 4, 5130;
- 17bA. Radwan, H. Jin, D. He, S. Mu, Nano-Micro Lett. 2021, 13, 132;
- 17cZ. Liang, T. Qiu, S. Gao, R. Zhong, R. Zou, Adv. Energy Mater. 2021, 11, 2003410;
- 17dW. Xia, A. Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837–1866;
- 17eK. Shen, X. Chen, J. Chen, Y. Li, ACS Catal. 2016, 6, 5887–5903.
- 18H. F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 2020, 49, 1414–1448.
- 19Z. Xiang, Y. Song, J. Xiong, Z. Pan, X. Wang, L. Liu, R. Liu, H. Yang, W. Lu, Carbon 2019, 142, 20–31.
- 20
- 20aL. G. Cançado, A. Jorio, E. H. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Nano Lett. 2011, 11, 3190–3196;
- 20bB. Kuang, W. Song, M. Ning, J. Li, Z. Zhao, D. Guo, M. Cao, H. Jin, Carbon 2018, 127, 209–217.
- 21H. J. Yang, W. Q. Cao, D. Q. Zhang, T. J. Su, H. L. Shi, W. Z. Wang, J. Yuan, M. S. Cao, ACS Appl. Mater. Interfaces 2015, 7, 7073–7077.
- 22B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 12951–12960.
- 23B. Quan, W. Shi, S. J. H. Ong, X. Lu, P. L. Wang, G. Ji, Y. Guo, L. Zheng, Z. J. Xu, Adv. Funct. Mater. 2019, 29, 1901236.
- 24Y. Pan, H. Q. Su, E. L. Zhou, H. Z. Yin, K. Z. Shao, Z. M. Su, Dalton Trans. 2019, 48, 3723–3729.
- 25Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, J. Am. Chem. Soc. 2012, 134, 3979–3982.
- 26
- 26aK. Miyata, Y. Konno, T. Nakanishi, A. Kobayashi, M. Kato, K. Fushimi, Y. Hasegawa, Angew. Chem. Int. Ed. 2013, 52, 6413–6416; Angew. Chem. 2013, 125, 6541–6544;
- 26bX. Rao, T. Song, J. Gao, Y. Cui, Y. Yang, C. Wu, B. Chen, G. Qian, J. Am. Chem. Soc. 2013, 135, 15559–15564;
- 26cY. Hasegawa, Y. Kitagawa, J. Mater. Chem. C 2019, 7, 7494–7511.
- 27C. Yin, J. Li, T. Li, Y. Yu, Y. Kong, P. Gao, H. Peng, L. Tong, J. Zhang, Adv. Funct. Mater. 2020, 30, 2001396.
- 28J. A. Stoeger, M. Palomino, K. V. Agrawal, X. Zhang, G. N. Karanikolos, S. Valencia, A. Corma, M. Tsapatsis, Angew. Chem. Int. Ed. 2012, 51, 2470–2473; Angew. Chem. 2012, 124, 2520–2523.
- 29
- 29aY. Liu, M. Li, Z. Chen, Y. Cui, J. Lu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 7659–7663; Angew. Chem. 2021, 133, 7737–7741;
- 29bM. Wang, L. Bai, M. Li, L. Gao, M. Wang, P. Rao, Y. Zhang, J. Membr. Sci. 2019, 572, 567–579;
- 29cY. Liu, W. Qiang, T. Ji, M. Zhang, M. Li, J. Lu, Sci. Adv. 2020, 6, eaay5993.
- 30
- 30aT. Ji, C. Liu, X. Lu, J. Zhu, ACS Sustainable Chem. Eng. 2018, 6, 11493–11501;
- 30bT. Ji, Z. Li, C. Liu, X. Lu, L. Li, J. Zhu, Appl. Catal. B 2019, 243, 741–749.
- 31P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, T. A. Taton, J. Appl. Phys. 2006, 100, 054305.
- 32
- 32aT. Ji, R. Tu, L. Li, L. Mu, C. Liu, X. Lu, J. Zhu, Appl. Catal. B 2018, 227, 266–275;
- 32bT. Ji, R. Tu, L. Mu, X. Lu, J. Zhu, ACS Sustainable Chem. Eng. 2017, 5, 4352–4358.
- 33W. Liu, J. Zheng, S. Cao, L. Wang, F. Gao, K.-C. Chou, X. Hou, W. Yang, Inorg. Chem. 2018, 57, 1598–1603.
- 34A. M. Schwenke, S. Hoeppener, U. S. Schubert, J. Mater. Chem. A 2015, 3, 23778–23787.
- 35Y. Asakuma, S. Matsumura, A. Saptoro, Chem. Eng. Process. 2018, 132, 11–15.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.