A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging
Dr. Chenzhi Yao
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorYing Chen
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Mengyao Zhao
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Shangfeng Wang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Bin Wu
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYiwei Yang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDongrui Yin
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorPeng Yu
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Hongxin Zhang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Prof. Fan Zhang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Chenzhi Yao
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorYing Chen
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Mengyao Zhao
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Shangfeng Wang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Bin Wu
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorYiwei Yang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDongrui Yin
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorPeng Yu
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorDr. Hongxin Zhang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorCorresponding Author
Prof. Fan Zhang
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433 China
Search for more papers by this authorAbstract
Early detection of kidney disease is of vital importance due to its current prevalence worldwide. Fluorescence imaging, especially in the second near-infrared window (NIR-II) has been regarded as a promising technique for the early diagnosis of kidney disease due to the superior resolution and sensitivity. However, the reported NIR-II organic renal-clearable probes are hampered by their low brightness (ϵmaxΦf>1000 nm<10 M−1 cm−1) and limited blood circulation time (t1/2<2 h), which impede the targeted imaging performance. Herein, we develop the aza-boron-dipyrromethene (aza-BODIPY) brush macromolecular probes (Fudan BDIPY Probes (FBP 912)) with high brightness (ϵmaxΦf>1000 nm≈60 M−1 cm−1), which is about 10-fold higher than that of previously reported NIR-II renal-clearable organic probes. FBP 912 exhibits an average diameter of ≈4 nm and high renal clearance efficiency (≈65 % excretion through the kidney within 12 h), showing superior performance for non-invasively diagnosis of renal ischemia-reperfusion injury (RIR) earlier than clinical serum-based protocols. Additionally, the high molecular weight polymer brush enables FBP 912 with prolonged circulation time (t1/2≈6.1 h) and higher brightness than traditional PEGylated renal-clearable control fluorophores (t1/2<2 h), facilitating for 4T1 tumor passive targeted imaging and renal cell carcinoma active targeted imaging with higher signal-to-noise ratio and extended retention time.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202114273-sup-0001-misc_information.pdf5.6 MB | Supporting Information |
ange202114273-sup-0001-Movie_S1.mp48.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. A. Perazella, S. G. Coca, Nat. Rev. Nephrol. 2013, 9, 484–490;
- 1bJ. A. Kellum, J. R. Prowle, Nat. Rev. Nephrol. 2018, 14, 217–230.
- 2
- 2aX. Wang, J. Lewis, L. Appel, D. Cheek, G. Contreras, M. Faulkner, H. Feldman, J. Gassman, J. Lea, J. Kopple, M. Sika, R. Toto, T. Greene, J. Am. Soc. Nephrol. 2006, 17, 2900–2909;
- 2bM. Darmon, M. Ostermann, J. Cerda, M. A. Dimopoulos, L. Forni, E. Hoste, M. Legrand, N. Lerolle, E. Rondeau, A. Schneider, B. Souweine, M. Schetz, Intensive Care Med. 2017, 43, 829–840.
- 3A. B. Apolo, J. Riches, H. Schoder, O. Akin, A. Trout, M. I. Milowsky, D. F. Bajorin, J. Clin. Oncol. 2010, 28, 3973–3978.
- 4C. B. van der Pol, A. Chung, C. Lim, N. Gandhi, W. Tu, M. D. F. McInnes, N. Schieda, J. Magn. Reson. Imaging 2018, 48, 882–896.
- 5P. Martingano, F. Stacul, M. Cavallaro, F. Casagrande, S. Cernic, M. Belgrano, M. Cova, Radiol. Med. 2010, 115, 920–935.
- 6
- 6aJ. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133–1143;
- 6bM. Yu, J. Zhou, B. Du, X. Ning, C. Authement, L. Gandee, P. Kapur, J. T. Hsieh, J. Zheng, Angew. Chem. Int. Ed. 2016, 55, 2787–2791; Angew. Chem. 2016, 128, 2837–2841;
- 6cJ. Huang, C. Xie, X. Zhang, Y. Jiang, J. Li, Q. Fan, K. Pu, Angew. Chem. Int. Ed. 2019, 58, 15120–15127; Angew. Chem. 2019, 131, 15264–15271;
- 6dJ. Huang, Y. Jiang, J. Li, S. He, J. Huang, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 4415–4420; Angew. Chem. 2020, 132, 4445–4450;
- 6eB. Du, Y. Chong, X. Jiang, M. Yu, U. G. Lo, A. Dang, Y. A. Chen, S. Li, E. Hernandez, J. C. Lin, J. T. Hsieh, J. Zheng, Angew. Chem. Int. Ed. 2021, 60, 351–359; Angew. Chem. 2021, 133, 355–363;
- 6fH. Wan, H. Ma, S. Zhu, F. Wang, Y. Tian, R. Ma, Q. Yang, Z. Hu, T. Zhu, W. Wang, Z. Ma, M. Zhang, Y. Zhong, H. Sun, Y. Liang, H. Dai, Adv. Funct. Mater. 2018, 28, 1804956;
- 6gL. Cheng, D. Jiang, A. Kamkaew, H. F. Valdovinos, H. J. Im, L. Feng, C. G. England, S. Goel, T. E. Barnhart, Z. Liu, W. Cai, Adv. Funct. Mater. 2017, 27, 1702928.
- 7
- 7aC. Yang, H. Wang, S. Yokomizo, M. Hickey, H. Chang, H. Kang, T. Fukuda, M. Y. Song, S. Y. Lee, J. W. Park, K. Bao, H. S. Choi, Angew. Chem. Int. Ed. 2021, 60, 13847–13852; Angew. Chem. 2021, 133, 13966–13971;
- 7bJ. Liu, M. Yu, X. Ning, C. Zhou, S. Yang, J. Zheng, Angew. Chem. Int. Ed. 2013, 52, 12572–12576; Angew. Chem. 2013, 125, 12804–12808.
- 8
- 8aS. Zhu, Q. Yang, A. L. Antaris, J. Yue, Z. Ma, H. Wang, W. Huang, H. Wan, J. Wang, S. Diao, B. Zhang, X. Li, Y. Zhong, K. Yu, G. Hong, J. Luo, Y. Liang, H. Dai, Proc. Natl. Acad. Sci. USA 2017, 114, 962–967;
- 8bQ. Yang, Z. Hu, S. Zhu, R. Ma, H. Ma, Z. Ma, H. Wan, T. Zhu, Z. Jiang, W. Liu, L. Jiao, H. Sun, Y. Liang, H. Dai, J. Am. Chem. Soc. 2018, 140, 1715–1724;
- 8cY. Fang, J. Shang, D. Liu, W. Shi, X. Li, H. Ma, J. Am. Chem. Soc. 2020, 142, 15271–15275;
- 8dG. Hong, A. L. Antaris, H. Dai, Nat. Biomed. Eng. 2017, 1, 0010;
- 8eC. Li, G. Chen, Y. Zhang, F. Wu, Q. Wang, J. Am. Chem. Soc. 2020, 142, 14789–14804;
- 8fZ. Lei, F. Zhang, Angew. Chem. Int. Ed. 2021, 60, 16294–16308; Angew. Chem. 2021, 133, 16430–16444;
- 8gB. Li, L. Lu, M. Zhao, Z. Lei, F. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7483–7487; Angew. Chem. 2018, 130, 7605–7609;
- 8hZ. Sheng, B. Guo, D. Hu, S. Xu, W. Wu, W. H. Liew, K. Yao, J. Jiang, C. Liu, H. Zheng, B. Liu, Adv. Mater. 2018, 1800766;
- 8iD. Li, C. Qu, Q. Liu, Y. Wu, X. Hu, K. Qian, B. Chang, S. He, Y. Yuan, Y. Li, T. Ko, A. Yu, Z. Cheng, Adv. Funct. Mater. 2020, 30, 1906343;
- 8jE. D. Cosco, A. L. Spearman, S. Ramakrishnan, J. G. P. Lingg, M. Saccomano, M. Pengshung, B. A. Arus, K. C. Y. Wong, S. Glasl, V. Ntziachristos, M. Warmer, R. R. McLaughlin, O. T. Bruns, E. M. Sletten, Nat. Chem. 2020, 12, 1123–1130.
- 9A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R. Alamparambil, X. Hong, Z. Cheng, H. Dai, Nat. Mater. 2016, 15, 235–242.
- 10
- 10aP. Cheng, K. Pu, Nat. Rev. Mater. 2021, https://doi.org/10.1038/s41578-41021-00328-41576;
10.1038/s41578-41021-00328-41576 Google Scholar
- 10bH. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165–1170;
- 10cA. Ruggiero, C. H. Villa, E. Bander, D. A. Rey, M. Bergkvist, C. A. Batt, K. Manova-Todorova, W. M. Deen, D. A. Scheinberg, M. R. McDevitt, Proc. Natl. Acad. Sci. USA 2010, 107, 12369–12374;
- 10dB. Du, M. Yu, J. Zheng, Nat. Rev. Mater. 2018, 3, 358–374;
- 10eB. Haraldsson, J. Nystrom, W. M. Deen, Physiol. Rev. 2008, 88, 451–487.
- 11S. Wang, Y. Fan, D. Li, C. Sun, Z. Lei, L. Lu, T. Wang, F. Zhang, Nat. Commun. 2019, 10, 1058.
- 12X. D. Zhang, H. Wang, A. L. Antaris, L. Li, S. Diao, R. Ma, A. Nguyen, G. Hong, Z. Ma, J. Wang, S. Zhu, J. M. Castellano, T. Wyss-Coray, Y. Liang, J. Luo, H. Dai, Adv. Mater. 2016, 28, 6872–6879.
- 13D. Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka, Y. Urano, T. Nagano, J. Am. Chem. Soc. 2010, 132, 2795–2801.
- 14
- 14aS. Hatami, C. Wurth, M. Kaiser, S. Leubner, S. Gabriel, L. Bahrig, V. Lesnyak, J. Pauli, N. Gaponik, A. Eychmuller, U. Resch-Genger, Nanoscale 2015, 7, 133–143;
- 14bO. E. Semonin, J. C. Johnson, J. M. Luther, A. G. Midgett, A. J. Nozik, M. C. Beard, J. Phys. Chem. Lett. 2010, 1, 2445–2450.
- 15R. Philip, A. Penzkofer, W. Baumler, R. M. Szeimies, C. Abels, J. Photochem. Photobiol. A 1996, 96, 137–148.
- 16M. Ohlson, J. Sorensson, K. Lindstrom, A. M. Blom, E. Fries, B. Haraldsson, Am. J. Physiol. Ren. Physiol. 2001, 281, F103–F113.
- 17K. Kanazaki, K. Sano, A. Makino, F. Yamauchi, A. Takahashi, T. Homma, M. Ono, H. Saji, J. Controlled Release 2016, 226, 115–123.
- 18
- 18aR. K. Hsu, C. E. McCulloch, R. A. Dudley, L. J. Lo, C. Y. Hsu, J. Am. Soc. Nephrol. 2013, 24, 37–42;
- 18bC. Philipponnet, J. Aniort, C. Garrouste, J. L. Kemeny, A. E. Heng, Medicine 2018, 97, e13650.
- 19
- 19aR. J. Plenter, S. Jain, T. L. Nydam, A. H. Jani, Transplant. Proc. 2021, 53, 481–485;
- 19bM. Cakir, H. Duzova, I. Baysal, C. C. Gul, G. Kuscu, F. Kutluk, H. Cakin, S. Seker, E. Ilbegi, S. Uslu, U. Avci, S. Demir, C. Akinci, S. Atli, Ren. Fail. 2017, 39, 385–391.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.